EconPapers    
Economics at your fingertips  
 

Heterogeneous firing responses predict diverse couplings to presynaptic activity in mice layer V pyramidal neurons

Yann Zerlaut and Alain Destexhe

PLOS Computational Biology, 2017, vol. 13, issue 4, 1-27

Abstract: In this study, we present a theoretical framework combining experimental characterizations and analytical calculus to capture the firing rate input-output properties of single neurons in the fluctuation-driven regime. Our framework consists of a two-step procedure to treat independently how the dendritic input translates into somatic fluctuation variables, and how the latter determine action potential firing. We use this framework to investigate the functional impact of the heterogeneity in firing responses found experimentally in young mice layer V pyramidal cells. We first design and calibrate in vitro a simplified morphological model of layer V pyramidal neurons with a dendritic tree following Rall's branching rule. Then, we propose an analytical derivation for the membrane potential fluctuations at the soma as a function of the properties of the synaptic input in dendrites. This mathematical description allows us to easily emulate various forms of synaptic input: either balanced, unbalanced, synchronized, purely proximal or purely distal synaptic activity. We find that those different forms of dendritic input activity lead to various impact on the somatic membrane potential fluctuations properties, thus raising the possibility that individual neurons will differentially couple to specific forms of activity as a result of their different firing response. We indeed found such a heterogeneous coupling between synaptic input and firing response for all types of presynaptic activity. This heterogeneity can be explained by different levels of cellular excitability in the case of the balanced, unbalanced, synchronized and purely distal activity. A notable exception appears for proximal dendritic inputs: increasing the input level can either promote firing response in some cells, or suppress it in some other cells whatever their individual excitability. This behavior can be explained by different sensitivities to the speed of the fluctuations, which was previously associated to different levels of sodium channel inactivation and density. Because local network connectivity rather targets proximal dendrites, our results suggest that this aspect of biophysical heterogeneity might be relevant to neocortical processing by controlling how individual neurons couple to local network activity.Author summary: Neocortical processing of sensory input relies on the specific activation of subpopulations within the cortical network. Though specific circuitry is thought to be the primary mechanism underlying this functional principle, we explore here a putative complementary mechanism: whether diverse biophysical features in single neurons contribute to such differential activation. In a previous study, we reported that, in young mice visual cortex, individual neurons differ not only in their excitability but also in their sensitivities to the properties of the membrane potential fluctuations. In the present work, we analyze how this heterogeneity is translated into diverse input-output properties in the context of low synchrony population dynamics. As expected, we found that individual neurons couple differentially to specific form of presynaptic activity (emulating afferent stimuli of various properties) mostly because of their differences in excitability. However, we also found that the response to proximal dendritic input was controlled by the sensitivity to the speed of the fluctuations (which can be linked to various levels of density of sodium channels and sodium inactivation). Our study thus proposes a novel quantitative insight into the functional impact of biophysical heterogeneity: because of their various firing responses to fluctuations, individual neurons will differentially couple to local network activity.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005452 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 05452&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1005452

DOI: 10.1371/journal.pcbi.1005452

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol (ploscompbiol@plos.org).

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1005452