Sequence dependency of canonical base pair opening in the DNA double helix
Viveca Lindahl,
Alessandra Villa and
Berk Hess
PLOS Computational Biology, 2017, vol. 13, issue 4, 1-22
Abstract:
The flipping-out of a DNA base from the double helical structure is a key step of many cellular processes, such as DNA replication, modification and repair. Base pair opening is the first step of base flipping and the exact mechanism is still not well understood. We investigate sequence effects on base pair opening using extensive classical molecular dynamics simulations targeting the opening of 11 different canonical base pairs in two DNA sequences. Two popular biomolecular force fields are applied. To enhance sampling and calculate free energies, we bias the simulation along a simple distance coordinate using a newly developed adaptive sampling algorithm. The simulation is guided back and forth along the coordinate, allowing for multiple opening pathways. We compare the calculated free energies with those from an NMR study and check assumptions of the model used for interpreting the NMR data. Our results further show that the neighboring sequence is an important factor for the opening free energy, but also indicates that other sequence effects may play a role. All base pairs are observed to have a propensity for opening toward the major groove. The preferred opening base is cytosine for GC base pairs, while for AT there is sequence dependent competition between the two bases. For AT opening, we identify two non-canonical base pair interactions contributing to a local minimum in the free energy profile. For both AT and CG we observe long-lived interactions with water and with sodium ions at specific sites on the open base pair.Author summary: The DNA double helix, a molecule that stores biological information, has become an iconic image of biomedical research. In order to use or repair the information it carries, the bases that are stacked in the helix need to be chemically exposed. This can happen either by separating the two strands in the helix or by flipping out individual bases. Here, we focus on the latter process. Usually proteins are involved in interactions with bases, but it is still unclear if bases are pulled out actively by proteins or if they act on spontaneously flipped bases. Although experiments can detect base pair opening, it is difficult to detect which base moves in which direction. Here, we present results from molecular dynamics simulations using a recently developed sampling method which improves the statistics in the simulations by enhancing the probability of the base pair opening event. We observe differences in probability, modes and mechanism of opening that depend not only on the types of the bases in the pair, but also strongly on their neighbors. This provides essential information for understanding how DNA functions.
Date: 2017
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005463 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 05463&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1005463
DOI: 10.1371/journal.pcbi.1005463
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().