EconPapers    
Economics at your fingertips  
 

Predicting explorative motor learning using decision-making and motor noise

Xiuli Chen, Kieran Mohr and Joseph M Galea

PLOS Computational Biology, 2017, vol. 13, issue 4, 1-33

Abstract: A fundamental problem faced by humans is learning to select motor actions based on noisy sensory information and incomplete knowledge of the world. Recently, a number of authors have asked whether this type of motor learning problem might be very similar to a range of higher-level decision-making problems. If so, participant behaviour on a high-level decision-making task could be predictive of their performance during a motor learning task. To investigate this question, we studied performance during an explorative motor learning task and a decision-making task which had a similar underlying structure with the exception that it was not subject to motor (execution) noise. We also collected an independent measurement of each participant’s level of motor noise. Our analysis showed that explorative motor learning and decision-making could be modelled as the (approximately) optimal solution to a Partially Observable Markov Decision Process bounded by noisy neural information processing. The model was able to predict participant performance in motor learning by using parameters estimated from the decision-making task and the separate motor noise measurement. This suggests that explorative motor learning can be formalised as a sequential decision-making process that is adjusted for motor noise, and raises interesting questions regarding the neural origin of explorative motor learning.Author summary: Until recently, motor learning was viewed as an automatic process that was independent, and even in conflict with higher-level cognitive processes such as decision-making. However, it is now thought that decision-making forms an integral part of motor learning. To further examine the relationship between decision-making and motor learning, we asked whether explorative motor learning could be considered a decision-making task that was adjusted for motor noise. We studied human performance in an explorative motor learning task and a decision-making task which had a similar underlying structure with the exception that it was not subject to motor (execution) noise. In addition, we independently measured each participant’s level of motor noise. Crucially, with a computational model, we were able to predict participant explorative motor learning by using parameters estimated from the decision-making task and the separate motor noise task. This suggests that explorative motor learning can be formalised as a sequential decision-making process that is adjusted for motor noise, and reinforces the view that the mechanisms which control decision-making and motor behaviour are highly integrated.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005503 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 05503&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1005503

DOI: 10.1371/journal.pcbi.1005503

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1005503