Automatically tracking neurons in a moving and deforming brain
Jeffrey P Nguyen,
Ashley N Linder,
George S Plummer,
Joshua W Shaevitz and
Andrew M Leifer
PLOS Computational Biology, 2017, vol. 13, issue 5, 1-19
Abstract:
Advances in optical neuroimaging techniques now allow neural activity to be recorded with cellular resolution in awake and behaving animals. Brain motion in these recordings pose a unique challenge. The location of individual neurons must be tracked in 3D over time to accurately extract single neuron activity traces. Recordings from small invertebrates like C. elegans are especially challenging because they undergo very large brain motion and deformation during animal movement. Here we present an automated computer vision pipeline to reliably track populations of neurons with single neuron resolution in the brain of a freely moving C. elegans undergoing large motion and deformation. 3D volumetric fluorescent images of the animal’s brain are straightened, aligned and registered, and the locations of neurons in the images are found via segmentation. Each neuron is then assigned an identity using a new time-independent machine-learning approach we call Neuron Registration Vector Encoding. In this approach, non-rigid point-set registration is used to match each segmented neuron in each volume with a set of reference volumes taken from throughout the recording. The way each neuron matches with the references defines a feature vector which is clustered to assign an identity to each neuron in each volume. Finally, thin-plate spline interpolation is used to correct errors in segmentation and check consistency of assigned identities. The Neuron Registration Vector Encoding approach proposed here is uniquely well suited for tracking neurons in brains undergoing large deformations. When applied to whole-brain calcium imaging recordings in freely moving C. elegans, this analysis pipeline located 156 neurons for the duration of an 8 minute recording and consistently found more neurons more quickly than manual or semi-automated approaches.Author summary: Computer algorithms for identifying and tracking neurons in images of a brain have struggled to keep pace with rapid advances in neuroimaging. In small transparent organism like the nematode C. elegans, it is now possible to record neural activity from all of the neurons in the animal’s head with single-cell resolution as it crawls. A critical challenge is to identify and track each individual neuron as the brain moves and bends. Previous methods required large amounts of manual human annotation. In this work, we present a fully automated algorithm for neuron segmentation and tracking in freely behaving C. elegans. Our approach uses non-rigid point-set registration to construct feature vectors describing the location of each neuron relative to other neurons and other volumes in the recording. Then we cluster feature vectors in a time-independent fashion to track neurons through time. This new approach works very well when compared to a human.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005517 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 05517&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1005517
DOI: 10.1371/journal.pcbi.1005517
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().