Robust transmission of rate coding in the inhibitory Purkinje cell to cerebellar nuclei pathway in awake mice
Samira Abbasi,
Amber E Hudson,
Selva K Maran,
Ying Cao,
Ataollah Abbasi,
Detlef H Heck and
Dieter Jaeger
PLOS Computational Biology, 2017, vol. 13, issue 6, 1-25
Abstract:
Neural coding through inhibitory projection pathways remains poorly understood. We analyze the transmission properties of the Purkinje cell (PC) to cerebellar nucleus (CN) pathway in a modeling study using a data set recorded in awake mice containing respiratory rate modulation. We find that inhibitory transmission from tonically active PCs can transmit a behavioral rate code with high fidelity. We parameterized the required population code in PC activity and determined that 20% of PC inputs to a full compartmental CN neuron model need to be rate-comodulated for transmission of a rate code. Rate covariance in PC inputs also accounts for the high coefficient of variation in CN spike trains, while the balance between excitation and inhibition determines spike rate and local spike train variability. Overall, our modeling study can fully account for observed spike train properties of cerebellar output in awake mice, and strongly supports rate coding in the cerebellum.Author summary: Detailed computer simulations of biological neurons can make an important contribution to our understanding of how the brain works. In this paper we use such a model of a neuron that represents the output from the cerebellum. We can show that the inhibition this neuron type receives from Purkinje cells in the cerebellar cortex is well suited to pass a detailed time course of movement control to the output of the cerebellum. Importantly we find that this type of coding requires a population of Purkinje cells that pass the same temporal coding of spike rate to the output neurons in the cerebellar nuclei.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005578 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 05578&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1005578
DOI: 10.1371/journal.pcbi.1005578
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().