A knowledge-based T2-statistic to perform pathway analysis for quantitative proteomic data
En-Yu Lai,
Yi-Hau Chen and
Kun-Pin Wu
PLOS Computational Biology, 2017, vol. 13, issue 6, 1-29
Abstract:
Approaches to identify significant pathways from high-throughput quantitative data have been developed in recent years. Still, the analysis of proteomic data stays difficult because of limited sample size. This limitation also leads to the practice of using a competitive null as common approach; which fundamentally implies genes or proteins as independent units. The independent assumption ignores the associations among biomolecules with similar functions or cellular localization, as well as the interactions among them manifested as changes in expression ratios. Consequently, these methods often underestimate the associations among biomolecules and cause false positives in practice. Some studies incorporate the sample covariance matrix into the calculation to address this issue. However, sample covariance may not be a precise estimation if the sample size is very limited, which is usually the case for the data produced by mass spectrometry. In this study, we introduce a multivariate test under a self-contained null to perform pathway analysis for quantitative proteomic data. The covariance matrix used in the test statistic is constructed by the confidence scores retrieved from the STRING database or the HitPredict database. We also design an integrating procedure to retain pathways of sufficient evidence as a pathway group. The performance of the proposed T2-statistic is demonstrated using five published experimental datasets: the T-cell activation, the cAMP/PKA signaling, the myoblast differentiation, and the effect of dasatinib on the BCR-ABL pathway are proteomic datasets produced by mass spectrometry; and the protective effect of myocilin via the MAPK signaling pathway is a gene expression dataset of limited sample size. Compared with other popular statistics, the proposed T2-statistic yields more accurate descriptions in agreement with the discussion of the original publication. We implemented the T2-statistic into an R package T2GA, which is available at https://github.com/roqe/T2GA.Author summary: Pathway analysis is a common approach to quickly access the pathways being regulated in the experiments. There are numerous statistics to perform pathway analysis; most of them assume that the genes or proteins are independent of each other for statistical ease. This assumption, however, is unrealistic to the real biological system and may cause false positives in practice. A standard way to address this issue is to measure the associations among genes or proteins. Unfortunately, the estimation of associations requires sufficient sample size, which is usually not available for proteomic data produced by mass spectrometry. In this study, we propose a T2-statistic, which estimates the associations among gene products, to perform pathway analysis for quantitative proteomic data. Instead of calculating the associations directly from data, we use the confidence scores retrieved from protein-protein interaction databases. We also design an integrating procedure to reserve pathways of sufficient evidence as a regulated pathway group. We compare the proposed T2-statistic to other popular statistics using five published experimental datasets, and the T2-statistic yields more accurate descriptions in agreement with the discussion of the original papers.
Date: 2017
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005601 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 05601&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1005601
DOI: 10.1371/journal.pcbi.1005601
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol (ploscompbiol@plos.org).