EconPapers    
Economics at your fingertips  
 

Measuring distance through dense weighted networks: The case of hospital-associated pathogens

Tjibbe Donker, Timo Smieszek, Katherine L Henderson, Alan P Johnson, A Sarah Walker and Julie V Robotham

PLOS Computational Biology, 2017, vol. 13, issue 8, 1-19

Abstract: Hospital networks, formed by patients visiting multiple hospitals, affect the spread of hospital-associated infections, resulting in differences in risks for hospitals depending on their network position. These networks are increasingly used to inform strategies to prevent and control the spread of hospital-associated pathogens. However, many studies only consider patients that are received directly from the initial hospital, without considering the effect of indirect trajectories through the network. We determine the optimal way to measure the distance between hospitals within the network, by reconstructing the English hospital network based on shared patients in 2014–2015, and simulating the spread of a hospital-associated pathogen between hospitals, taking into consideration that each intermediate hospital conveys a delay in the further spread of the pathogen. While the risk of transferring a hospital-associated pathogen between directly neighbouring hospitals is a direct reflection of the number of shared patients, the distance between two hospitals far-away in the network is determined largely by the number of intermediate hospitals in the network. Because the network is dense, most long distance transmission chains in fact involve only few intermediate steps, spreading along the many weak links. The dense connectivity of hospital networks, together with a strong regional structure, causes hospital-associated pathogens to spread from the initial outbreak in a two-step process: first, the directly surrounding hospitals are affected through the strong connections, second all other hospitals receive introductions through the multitude of weaker links. Although the strong connections matter for local spread, weak links in the network can offer ideal routes for hospital-associated pathogens to travel further faster. This hold important implications for infection prevention and control efforts: if a local outbreak is not controlled in time, colonised patients will appear in other regions, irrespective of the distance to the initial outbreak, making import screening ever more difficult.Author summary: Shared patients can spread hospital-associated pathogens between hospitals, together forming a large network in which all hospitals are connected. We set out to measure the distance between hospitals in such a network, best reflecting the risk of a hospital-associated pathogen spreading from one to the other. The central problem is that this risk may not be a directly reflected by the weight of the direct connections between hospitals, because the pathogen could arrive through a longer indirect route, first causing a problem in an intermediate hospital. We determined the optimal balance between connection weights and path length, by testing different weighting factors between them against simulated spread of a pathogen. We found that while strong connections are important risk factor for a hospital’s direct neighbours, weak connections offer ideal indirect routes for hospital-associated pathogens to travel further faster. These routes should not be underestimated when designing control strategies.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005622 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 05622&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1005622

DOI: 10.1371/journal.pcbi.1005622

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pcbi00:1005622