Neuron’s eye view: Inferring features of complex stimuli from neural responses
Xin Chen,
Jeffrey M Beck and
John M Pearson
PLOS Computational Biology, 2017, vol. 13, issue 8, 1-18
Abstract:
Experiments that study neural encoding of stimuli at the level of individual neurons typically choose a small set of features present in the world—contrast and luminance for vision, pitch and intensity for sound—and assemble a stimulus set that systematically varies along these dimensions. Subsequent analysis of neural responses to these stimuli typically focuses on regression models, with experimenter-controlled features as predictors and spike counts or firing rates as responses. Unfortunately, this approach requires knowledge in advance about the relevant features coded by a given population of neurons. For domains as complex as social interaction or natural movement, however, the relevant feature space is poorly understood, and an arbitrary a priori choice of features may give rise to confirmation bias. Here, we present a Bayesian model for exploratory data analysis that is capable of automatically identifying the features present in unstructured stimuli based solely on neuronal responses. Our approach is unique within the class of latent state space models of neural activity in that it assumes that firing rates of neurons are sensitive to multiple discrete time-varying features tied to the stimulus, each of which has Markov (or semi-Markov) dynamics. That is, we are modeling neural activity as driven by multiple simultaneous stimulus features rather than intrinsic neural dynamics. We derive a fast variational Bayesian inference algorithm and show that it correctly recovers hidden features in synthetic data, as well as ground-truth stimulus features in a prototypical neural dataset. To demonstrate the utility of the algorithm, we also apply it to cluster neural responses and demonstrate successful recovery of features corresponding to monkeys and faces in the image set.Author summary: Many neuroscience experiments begin with a set of reduced stimuli designed to vary only along a small set of variables. Yet many phenomena of interest—natural movies, objects—are not easily parameterized by a small number of dimensions. Here, we develop a novel Bayesian model for clustering stimuli based solely on neural responses, allowing us to discover which latent features of complex stimuli actually drive neural activity. We demonstrate that this model allows us to recover key features of neural responses in a pair of well-studied paradigms.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005645 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 05645&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1005645
DOI: 10.1371/journal.pcbi.1005645
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().