Decoding brain activity using a large-scale probabilistic functional-anatomical atlas of human cognition
Timothy N Rubin,
Oluwasanmi Koyejo,
Krzysztof J Gorgolewski,
Michael N Jones,
Russell A Poldrack and
Tal Yarkoni
PLOS Computational Biology, 2017, vol. 13, issue 10, 1-24
Abstract:
A central goal of cognitive neuroscience is to decode human brain activity—that is, to infer mental processes from observed patterns of whole-brain activation. Previous decoding efforts have focused on classifying brain activity into a small set of discrete cognitive states. To attain maximal utility, a decoding framework must be open-ended, systematic, and context-sensitive—that is, capable of interpreting numerous brain states, presented in arbitrary combinations, in light of prior information. Here we take steps towards this objective by introducing a probabilistic decoding framework based on a novel topic model—Generalized Correspondence Latent Dirichlet Allocation—that learns latent topics from a database of over 11,000 published fMRI studies. The model produces highly interpretable, spatially-circumscribed topics that enable flexible decoding of whole-brain images. Importantly, the Bayesian nature of the model allows one to “seed” decoder priors with arbitrary images and text—enabling researchers, for the first time, to generate quantitative, context-sensitive interpretations of whole-brain patterns of brain activity.Author summary: A central goal of cognitive neuroscience is to decode human brain activity—i.e., to be able to infer mental processes from observed patterns of whole-brain activity. However, existing approaches to brain decoding suffer from a number of important limitations—for example, they often work only in one narrow domain of cognition, and cannot be easily generalized to novel contexts. Here we address such limitations by introducing a simple probabilistic framework based on a novel topic modeling approach. We use our approach to extract a set of highly interpretable latent “topics” from a large meta-analytic database of over 11,000 published fMRI studies. Each topic is associated with a single brain region and a set of semantically coherent cognitive functions. We demonstrate how these topics can be used to automatically “decode” brain activity in an open-ended way, enabling researchers to draw tentative conclusions about mental function on the basis of virtually any pattern of whole-brain activity. We highlight several important features of our framework, notably including the ability to take into account knowledge of the experimental context and/or prior experimenter belief.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005649 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 05649&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1005649
DOI: 10.1371/journal.pcbi.1005649
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().