Hybrid modeling and prediction of dynamical systems
Franz Hamilton,
Alun L Lloyd and
Kevin B Flores
PLOS Computational Biology, 2017, vol. 13, issue 7, 1-20
Abstract:
Scientific analysis often relies on the ability to make accurate predictions of a system’s dynamics. Mechanistic models, parameterized by a number of unknown parameters, are often used for this purpose. Accurate estimation of the model state and parameters prior to prediction is necessary, but may be complicated by issues such as noisy data and uncertainty in parameters and initial conditions. At the other end of the spectrum exist nonparametric methods, which rely solely on data to build their predictions. While these nonparametric methods do not require a model of the system, their performance is strongly influenced by the amount and noisiness of the data. In this article, we consider a hybrid approach to modeling and prediction which merges recent advancements in nonparametric analysis with standard parametric methods. The general idea is to replace a subset of a mechanistic model’s equations with their corresponding nonparametric representations, resulting in a hybrid modeling and prediction scheme. Overall, we find that this hybrid approach allows for more robust parameter estimation and improved short-term prediction in situations where there is a large uncertainty in model parameters. We demonstrate these advantages in the classical Lorenz-63 chaotic system and in networks of Hindmarsh-Rose neurons before application to experimentally collected structured population data.Author summary: The question of how best to predict the evolution of a dynamical system has received substantial interest in the scientific community. While traditional mechanistic modeling approaches have dominated, data-driven approaches which rely on data to build predictive models have gained increasing popularity. The reality is, both approaches have their drawbacks and limitations. In this article we ask the question of whether or not a hybrid approach to prediction, which combines characteristics of both mechanistic modeling and data-driven modeling, can offer improvements over the standalone methodologies. We analyze the performance of these methods in two model systems and then evaluate them on experimentally collected population data.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005655 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 05655&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1005655
DOI: 10.1371/journal.pcbi.1005655
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().