EconPapers    
Economics at your fingertips  
 

Mouth-clicks used by blind expert human echolocators – signal description and model based signal synthesis

Lore Thaler, Galen M Reich, Xinyu Zhang, Dinghe Wang, Graeme E Smith, Zeng Tao, Raja Syamsul Azmir Bin Raja Abdullah, Mikhail Cherniakov, Christopher J Baker, Daniel Kish and Michail Antoniou

PLOS Computational Biology, 2017, vol. 13, issue 8, 1-17

Abstract: Echolocation is the ability to use sound-echoes to infer spatial information about the environment. Some blind people have developed extraordinary proficiency in echolocation using mouth-clicks. The first step of human biosonar is the transmission (mouth click) and subsequent reception of the resultant sound through the ear. Existing head-related transfer function (HRTF) data bases provide descriptions of reception of the resultant sound. For the current report, we collected a large database of click emissions with three blind people expertly trained in echolocation, which allowed us to perform unprecedented analyses. Specifically, the current report provides the first ever description of the spatial distribution (i.e. beam pattern) of human expert echolocation transmissions, as well as spectro-temporal descriptions at a level of detail not available before. Our data show that transmission levels are fairly constant within a 60° cone emanating from the mouth, but levels drop gradually at further angles, more than for speech. In terms of spectro-temporal features, our data show that emissions are consistently very brief (~3ms duration) with peak frequencies 2-4kHz, but with energy also at 10kHz. This differs from previous reports of durations 3-15ms and peak frequencies 2-8kHz, which were based on less detailed measurements. Based on our measurements we propose to model transmissions as sum of monotones modulated by a decaying exponential, with angular attenuation by a modified cardioid. We provide model parameters for each echolocator. These results are a step towards developing computational models of human biosonar. For example, in bats, spatial and spectro-temporal features of emissions have been used to derive and test model based hypotheses about behaviour. The data we present here suggest similar research opportunities within the context of human echolocation. Relatedly, the data are a basis to develop synthetic models of human echolocation that could be virtual (i.e. simulated) or real (i.e. loudspeaker, microphones), and which will help understanding the link between physical principles and human behaviour.Author summary: Echolocation is the ability to use sound-echoes to infer spatial information about the environment. It is well known from certain species of bats or marine mammals. Remarkably, some blind people have developed extraordinary proficiency in echolocation using mouth-clicks. Human echolocation work has built on scant theoretical foundations to date. The current report characterizes the transmission (i.e. mouth click) that people use for echolocation, and in this way provides data that can be used to advance the field in a theory guided way. We collected a large database of mouth clicks with three blind people expertly trained in echolocation. This allowed us to perform unprecedented analyses. Specifically, the current report provides the first ever description of the beam pattern of human expert echolocation transmissions, as well as spectro-temporal descriptions at a level of detail not available before. Based on our measurements we also propose a mathematical model to synthesize transmissions. Thus, the data are a basis to develop synthetic models of human echolocation, which are essential for understanding characteristics of click echoes and human echolocation behaviour in tasks such as localising or recognising an object, navigating around it etc.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005670 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 05670&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1005670

DOI: 10.1371/journal.pcbi.1005670

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1005670