A stochastic-field description of finite-size spiking neural networks
Grégory Dumont,
Alexandre Payeur and
André Longtin
PLOS Computational Biology, 2017, vol. 13, issue 8, 1-34
Abstract:
Neural network dynamics are governed by the interaction of spiking neurons. Stochastic aspects of single-neuron dynamics propagate up to the network level and shape the dynamical and informational properties of the population. Mean-field models of population activity disregard the finite-size stochastic fluctuations of network dynamics and thus offer a deterministic description of the system. Here, we derive a stochastic partial differential equation (SPDE) describing the temporal evolution of the finite-size refractory density, which represents the proportion of neurons in a given refractory state at any given time. The population activity—the density of active neurons per unit time—is easily extracted from this refractory density. The SPDE includes finite-size effects through a two-dimensional Gaussian white noise that acts both in time and along the refractory dimension. For an infinite number of neurons the standard mean-field theory is recovered. A discretization of the SPDE along its characteristic curves allows direct simulations of the activity of large but finite spiking networks; this constitutes the main advantage of our approach. Linearizing the SPDE with respect to the deterministic asynchronous state allows the theoretical investigation of finite-size activity fluctuations. In particular, analytical expressions for the power spectrum and autocorrelation of activity fluctuations are obtained. Moreover, our approach can be adapted to incorporate multiple interacting populations and quasi-renewal single-neuron dynamics.Author summary: In the brain, information about stimuli is encoded in the timing of action potentials produced by neurons. An understanding of this neural code is facilitated by the use of a well-established method called mean-field theory. Over the last two decades or so, mean-field theory has brought an important added value to the study of emergent properties of neural circuits. Nonetheless, in the mean-field framework, the thermodynamic limit has to be taken, that is, to postulate the number of neurons to be infinite. Doing so, small fluctuations are neglected, and the randomness so present at the cellular level disappears from the description of the circuit dynamics. The origin and functional implications of variability at the network scale are ongoing questions of interest in neuroscience. It is therefore crucial to go beyond the mean-field approach and to propose a description that fully entails the stochastic aspects of network dynamics. In this manuscript, we address this issue by showing that the dynamics of finite-size networks can be represented by stochastic partial differential equations.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005691 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 05691&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1005691
DOI: 10.1371/journal.pcbi.1005691
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().