EconPapers    
Economics at your fingertips  
 

A mechanistic spatio-temporal framework for modelling individual-to-individual transmission—With an application to the 2014-2015 West Africa Ebola outbreak

Max S Y Lau, Gavin J Gibson, Hola Adrakey, Amanda McClelland, Steven Riley, Jon Zelner, George Streftaris, Sebastian Funk, Jessica Metcalf, Benjamin D Dalziel and Bryan T Grenfell

PLOS Computational Biology, 2017, vol. 13, issue 10, 1-18

Abstract: In recent years there has been growing availability of individual-level spatio-temporal disease data, particularly due to the use of modern communicating devices with GPS tracking functionality. These detailed data have been proven useful for inferring disease transmission to a more refined level than previously. However, there remains a lack of statistically sound frameworks to model the underlying transmission dynamic in a mechanistic manner. Such a development is particularly crucial for enabling a general epidemic predictive framework at the individual level. In this paper we propose a new statistical framework for mechanistically modelling individual-to-individual disease transmission in a landscape with heterogeneous population density. Our methodology is first tested using simulated datasets, validating our inferential machinery. The methodology is subsequently applied to data that describes a regional Ebola outbreak in Western Africa (2014-2015). Our results show that the methods are able to obtain estimates of key epidemiological parameters that are broadly consistent with the literature, while revealing a significantly shorter distance of transmission. More importantly, in contrast to existing approaches, we are able to perform a more general model prediction that takes into account the susceptible population. Finally, our results show that, given reasonable scenarios, the framework can be an effective surrogate for susceptible-explicit individual models which are often computationally challenging.Author summary: Availability of individual-level, spatio-temporal disease data (e.g. GPS locations of infected individuals) has been increasing in recent years, primarily due to the increased use of modern communication devices such as mobile phones. Such data create invaluable opportunities for researchers to study disease transmission on a more refined individual-to-individual level, facilitating the designs of potentially more effective control measures. However, the growing availability of such precise data has not been accompanied by development of statistically sound mechanistic frameworks. Developing such frameworks is an essential step for systematically extracting maximal information from data, in particular, evaluating the efficacy of individually-targeted control strategies and enabling forward epidemic prediction at the individual level. In this paper we develop a novel statistical framework that overcomes a few key limitations of existing approaches, enabling a machinery that can be used to infer the history of partially observed outbreaks and, more importantly, to produce a more comprehensive epidemic prediction. Our framework may also be a good surrogate for more computationally challenging individual-based models.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005798 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 05798&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1005798

DOI: 10.1371/journal.pcbi.1005798

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1005798