EconPapers    
Economics at your fingertips  
 

Identification of immune signatures predictive of clinical protection from malaria

John Joseph Valletta and Mario Recker

PLOS Computational Biology, 2017, vol. 13, issue 10, 1-14

Abstract: Antibodies are thought to play an essential role in naturally acquired immunity to malaria. Prospective cohort studies have frequently shown how continuous exposure to the malaria parasite Plasmodium falciparum cause an accumulation of specific responses against various antigens that correlate with a decreased risk of clinical malaria episodes. However, small effect sizes and the often polymorphic nature of immunogenic parasite proteins make the robust identification of the true targets of protective immunity ambiguous. Furthermore, the degree of individual-level protection conferred by elevated responses to these antigens has not yet been explored. Here we applied a machine learning approach to identify immune signatures predictive of individual-level protection against clinical disease. We find that commonly assumed immune correlates are poor predictors of clinical protection in children. On the other hand, antibody profiles predictive of an individual’s malaria protective status can be found in data comprising responses to a large set of diverse parasite proteins. We show that this pattern emerges only after years of continuous exposure to the malaria parasite, whereas susceptibility to clinical episodes in young hosts (

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005812 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 05812&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1005812

DOI: 10.1371/journal.pcbi.1005812

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1005812