A free-boundary model of a motile cell explains turning behavior
Masoud Nickaeen,
Igor L Novak,
Stephanie Pulford,
Aaron Rumack,
Jamie Brandon,
Boris M Slepchenko and
Alex Mogilner
PLOS Computational Biology, 2017, vol. 13, issue 11, 1-22
Abstract:
To understand shapes and movements of cells undergoing lamellipodial motility, we systematically explore minimal free-boundary models of actin-myosin contractility consisting of the force-balance and myosin transport equations. The models account for isotropic contraction proportional to myosin density, viscous stresses in the actin network, and constant-strength viscous-like adhesion. The contraction generates a spatially graded centripetal actin flow, which in turn reinforces the contraction via myosin redistribution and causes retraction of the lamellipodial boundary. Actin protrusion at the boundary counters the retraction, and the balance of the protrusion and retraction shapes the lamellipodium. The model analysis shows that initiation of motility critically depends on three dimensionless parameter combinations, which represent myosin-dependent contractility, a characteristic viscosity-adhesion length, and a rate of actin protrusion. When the contractility is sufficiently strong, cells break symmetry and move steadily along either straight or circular trajectories, and the motile behavior is sensitive to conditions at the cell boundary. Scanning of a model parameter space shows that the contractile mechanism of motility supports robust cell turning in conditions where short viscosity-adhesion lengths and fast protrusion cause an accumulation of myosin in a small region at the cell rear, destabilizing the axial symmetry of a moving cell.Author summary: To understand shapes and movements of simple motile cells, we systematically explore minimal models describing a cell as a two-dimensional actin-myosin gel with a free boundary. The models account for actin-myosin contraction balanced by viscous stresses in the actin gel and uniform adhesion. The myosin contraction causes the lamellipodial boundary to retract. Actin protrusion at the boundary counters the retraction, and the balance of protrusion and retraction shapes the cell. The models reproduce a variety of motile shapes observed experimentally. The analysis shows that the mechanical state of a cell depends on a small number of parameters. We find that when the contractility is sufficiently strong, cells break symmetry and move steadily along either straight or circular trajectory. Scanning model parameters shows that the contractile mechanism of motility supports robust cell turning behavior in conditions where deformable actin gel and fast protrusion destabilize the axial symmetry of a moving cell.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005862 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 05862&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1005862
DOI: 10.1371/journal.pcbi.1005862
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().