Modeling visual-based pitch, lift and speed control strategies in hoverflies
Roman Goulard,
Jean-Louis Vercher and
Stéphane Viollet
PLOS Computational Biology, 2018, vol. 14, issue 1, 1-21
Abstract:
To avoid crashing onto the floor, a free falling fly needs to trigger its wingbeats quickly and control the orientation of its thrust accurately and swiftly to stabilize its pitch and hence its speed. Behavioural data have suggested that the vertical optic flow produced by the fall and crossing the visual field plays a key role in this anti-crash response. Free fall behavior analyses have also suggested that flying insect may not rely on graviception to stabilize their flight. Based on these two assumptions, we have developed a model which accounts for hoverflies´ position and pitch orientation recorded in 3D with a fast stereo camera during experimental free falls. Our dynamic model shows that optic flow-based control combined with closed-loop control of the pitch suffice to stabilize the flight properly. In addition, our model sheds a new light on the visual-based feedback control of fly´s pitch, lift and thrust. Since graviceptive cues are possibly not used by flying insects, the use of a vertical reference to control the pitch is discussed, based on the results obtained on a complete dynamic model of a virtual fly falling in a textured corridor. This model would provide a useful tool for understanding more clearly how insects may or not estimate their absolute attitude.Author summary: On the basis of vision-based feedback control of optic flow occurring during insects’ flight, we developed a dynamic model that accounts for the pitch orientation and speed in plummeting flies. We compared the hoverflies’ responses with our model and showed that an optic-flow based control strategy can be used to correct the initial pitch misorientation caused by the free fall situation. To complete the model, we combined the closed-loop control of the vertical optic flow with an additional feedback control loop based on the value of the absolute pitch orientation. The need for this measurement to stabilize the pitch orientation raises the question as whether this is also the case in dipterans. After ruling out the possibility that insects may use gravity acceleration cues to control their flight, for which no experimental evidence has been found so far, we discussed the three main sensory processes possibly involved in in their ability to control their attitude. Our model provides a useful tool for studying the various sensory processes possibly involved in dipterans’ flight stabilization abilities as well as the interactions between these processes.
Date: 2018
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005894 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 05894&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1005894
DOI: 10.1371/journal.pcbi.1005894
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().