Relatively slow stochastic gene-state switching in the presence of positive feedback significantly broadens the region of bimodality through stabilizing the uninduced phenotypic state
Hao Ge,
Pingping Wu,
Hong Qian and
Xiaoliang Sunney Xie
PLOS Computational Biology, 2018, vol. 14, issue 3, 1-24
Abstract:
Within an isogenic population, even in the same extracellular environment, individual cells can exhibit various phenotypic states. The exact role of stochastic gene-state switching regulating the transition among these phenotypic states in a single cell is not fully understood, especially in the presence of positive feedback. Recent high-precision single-cell measurements showed that, at least in bacteria, switching in gene states is slow relative to the typical rates of active transcription and translation. Hence using the lac operon as an archetype, in such a region of operon-state switching, we present a fluctuating-rate model for this classical gene regulation module, incorporating the more realistic operon-state switching mechanism that was recently elucidated. We found that the positive feedback mechanism induces bistability (referred to as deterministic bistability), and that the parameter range for its occurrence is significantly broadened by stochastic operon-state switching. We further show that in the absence of positive feedback, operon-state switching must be extremely slow to trigger bistability by itself. However, in the presence of positive feedback, which stabilizes the induced state, the relatively slow operon-state switching kinetics within the physiological region are sufficient to stabilize the uninduced state, together generating a broadened parameter region of bistability (referred to as stochastic bistability). We illustrate the opposite phenotype-transition rate dependence upon the operon-state switching rates in the two types of bistability, with the aid of a recently proposed rate formula for fluctuating-rate models. The rate formula also predicts a maximal transition rate in the intermediate region of operon-state switching, which is validated by numerical simulations in our model. Overall, our findings suggest a biological function of transcriptional “variations” among genetically identical cells, for the emergence of bistability and transition between phenotypic states.Author summary: Identifying the mechanism underlying the coexistence of multiple stable phenotypic states has been a challenging scientific problem for more than half a century, and an appropriate mathematical model at the single-cell level is also in high demand. Single-cell measurements conducted in the past ten years have shown that gene-state switching is slow relative to the typical rates of active transcription and translation; hence the recently proposed fluctuating-rate model is a good candidate for describing the single-cell dynamics. We use the classic gene regulation module of the lac operon as an archetype and build a specific fluctuating-rate model based on the recently identified operon-state switching mechanism. This model is analyzed to dissect the interplay between positive feedback and the stochastic switching of gene states in the emergence of bistability/multistablity and the transition between phenotypic states. We show that relatively slow operon-state switching stabilizes the uninduced state and that the positive feedback stabilizes the induced state. Thus, the parameter range for bistability is significantly broadened. In addition, recently proposed landscape theory and rate formula predict opposite phenotype-transition rate dependence on operon-state switching rates for the two types of bistability.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006051 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 06051&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1006051
DOI: 10.1371/journal.pcbi.1006051
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().