EconPapers    
Economics at your fingertips  
 

Correcting for batch effects in case-control microbiome studies

Sean M Gibbons, Claire Duvallet and Eric J Alm

PLOS Computational Biology, 2018, vol. 14, issue 4, 1-17

Abstract: High-throughput data generation platforms, like mass-spectrometry, microarrays, and second-generation sequencing are susceptible to batch effects due to run-to-run variation in reagents, equipment, protocols, or personnel. Currently, batch correction methods are not commonly applied to microbiome sequencing datasets. In this paper, we compare different batch-correction methods applied to microbiome case-control studies. We introduce a model-free normalization procedure where features (i.e. bacterial taxa) in case samples are converted to percentiles of the equivalent features in control samples within a study prior to pooling data across studies. We look at how this percentile-normalization method compares to traditional meta-analysis methods for combining independent p-values and to limma and ComBat, widely used batch-correction models developed for RNA microarray data. Overall, we show that percentile-normalization is a simple, non-parametric approach for correcting batch effects and improving sensitivity in case-control meta-analyses.Author summary: Batch effects are obstacles to comparing results across studies. Traditional meta-analysis techniques for combining p-values from independent studies, like Fisher’s method, are effective but statistically conservative. If batch-effects can be corrected, then statistical tests can be performed on data pooled across studies, increasing sensitivity to detect differences between treatment groups. Here, we show how a simple, model-free approach corrects for batch effects in case-control microbiome datasets.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006102 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 06102&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1006102

DOI: 10.1371/journal.pcbi.1006102

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol (ploscompbiol@plos.org).

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1006102