EconPapers    
Economics at your fingertips  
 

Excitable neuronal assemblies with adaptation as a building block of brain circuits for velocity-controlled signal propagation

Hesam Setareh, Moritz Deger and Wulfram Gerstner

PLOS Computational Biology, 2018, vol. 14, issue 7, 1-30

Abstract: The time scale of neuronal network dynamics is determined by synaptic interactions and neuronal signal integration, both of which occur on the time scale of milliseconds. Yet many behaviors like the generation of movements or vocalizations of sounds occur on the much slower time scale of seconds. Here we ask the question of how neuronal networks of the brain can support reliable behavior on this time scale. We argue that excitable neuronal assemblies with spike-frequency adaptation may serve as building blocks that can flexibly adjust the speed of execution of neural circuit function. We show in simulations that a chain of neuronal assemblies can propagate signals reliably, similar to the well-known synfire chain, but with the crucial difference that the propagation speed is slower and tunable to the behaviorally relevant range. Moreover we study a grid of excitable neuronal assemblies as a simplified model of the somatosensory barrel cortex of the mouse and demonstrate that various patterns of experimentally observed spatial activity propagation can be explained.Author summary: Models of activity propagation in cortical networks have often been based on feedforward structures. Here we propose a model of activity propagation, called excitation chain, which does not need such a feedforward structure. The model is composed of excitable neural assemblies with spike-frequency adaptation, connected bidirectionally in a row or a grid. This prototypical neural circuit can propagate activity forwards, backwards or in both directions. Furthermore, the propagation speed is slow enough to trigger the generation of behaviors on the time scale of hundreds of milliseconds. A two-dimensional variant of the model is able to generate different activity propagation patterns, similar to spontaneous activity and stimulus-evoked responses in anesthetized mouse barrel cortex. We propose the excitation chain model as a basic component that can be employed in various ways to create spiking neural circuit models that generate signals on behavioral time scales. In contrast to abstract models of excitable media, our model makes an explicit link to the time scale of neuronal spikes.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006216 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 06216&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1006216

DOI: 10.1371/journal.pcbi.1006216

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pcbi00:1006216