Learning the payoffs and costs of actions
Moritz Möller and
Rafal Bogacz
PLOS Computational Biology, 2019, vol. 15, issue 2, 1-32
Abstract:
A set of sub-cortical nuclei called basal ganglia is critical for learning the values of actions. The basal ganglia include two pathways, which have been associated with approach and avoid behavior respectively and are differentially modulated by dopamine projections from the midbrain. Inspired by the influential opponent actor learning model, we demonstrate that, under certain circumstances, these pathways may represent learned estimates of the positive and negative consequences (payoffs and costs) of individual actions. In the model, the level of dopamine activity encodes the motivational state and controls to what extent payoffs and costs enter the overall evaluation of actions. We show that a set of previously proposed plasticity rules is suitable to extract payoffs and costs from a prediction error signal if they occur at different moments in time. For those plasticity rules, successful learning requires differential effects of positive and negative outcome prediction errors on the two pathways and a weak decay of synaptic weights over trials. We also confirm through simulations that the model reproduces drug-induced changes of willingness to work, as observed in classical experiments with the D2-antagonist haloperidol.Author summary: The basal ganglia are structures underneath the surface of the vertebrate brain, associated with error-driven learning. Much is known about the anatomical and biological features of the basal ganglia; scientists now try to understand the algorithms implemented by these structures. Numerous models aspire to capture the learning functionality, but many of them only cover some specific aspect of the algorithm. Instead of further adding to that pool of partial models, we unify two existing ones—one which captures what the basal ganglia learn, and one that describes the learning mechanism itself. The first model suggests that the basal ganglia weigh positive against negative consequences of actions according to the motivational state. It hints how payoff and cost might be represented, but does not explain how those representations arise. The other model consists of biologically plausible plasticity rules, which describe how learning takes place, but not how the brain makes use of what is learned. We show that the two theories are compatible. Together, they form a model of learning and decision making that integrates the motivational state as well as the learned payoffs and costs of opportunities.
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006285 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 06285&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1006285
DOI: 10.1371/journal.pcbi.1006285
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().