Age-dependent Pavlovian biases influence motor decision-making
Xiuli Chen,
Robb B Rutledge,
Harriet R Brown,
Raymond J Dolan,
Sven Bestmann and
Joseph M Galea
PLOS Computational Biology, 2018, vol. 14, issue 7, 1-22
Abstract:
Motor decision-making is an essential component of everyday life which requires weighing potential rewards and punishments against the probability of successfully executing an action. To achieve this, humans rely on two key mechanisms; a flexible, instrumental, value-dependent process and a hardwired, Pavlovian, value-independent process. In economic decision-making, age-related decline in risk taking is explained by reduced Pavlovian biases that promote action toward reward. Although healthy ageing has also been associated with decreased risk-taking in motor decision-making, it is currently unknown whether this is a result of changes in Pavlovian biases, instrumental processes or a combination of both. Using a newly established approach-avoidance computational model together with a novel app-based motor decision-making task, we measured sensitivity to reward and punishment when participants (n = 26,532) made a ‘go/no-go’ motor gamble based on their perceived ability to execute a complex action. We show that motor decision-making can be better explained by a model with both instrumental and Pavlovian parameters, and reveal age-related changes across punishment- and reward-based instrumental and Pavlovian processes. However, the most striking effect of ageing was a decrease in Pavlovian attraction towards rewards, which was associated with a reduction in optimality of choice behaviour. In a subset of participants who also played an independent economic decision-making task (n = 17,220), we found similar decision-making tendencies for motor and economic domains across a majority of age groups. Pavlovian biases, therefore, play an important role in not only explaining motor decision-making behaviour but also the changes which occur through normal ageing. This provides a deeper understanding of the mechanisms which shape motor decision-making across the lifespan.Author summary: Decisions in everyday life often require weighing the probability of successfully executing an action (e.g., successfully crossing a street) against potential rewards and punishments. Although older individuals take fewer risks during such motor decision-making scenarios, the underlying mechanism remains unclear. Similar age-related changes in economic decision-making are explained by a decrease in Pavlovian attraction toward reward. However, despite the role of Pavlovian biases in linking action with reward and avoidance with punishment, their impact on motor decision-making is unclear. To address this, we developed a novel app-based motor decision-making task (n = 26,532). We found that motor decision-making was subject to Pavlovian influences. Although we found age-related changes for both punishment and reward-based decision-making processes, the most striking effect of ageing was a decrease in the facilitatory effect of Pavlovian attraction on action in pursuit of reward. Using data from an independent economic decision task in the same individuals (n = 17,220), we demonstrate similar decision-making tendencies for motor and economic domains across a majority of age groups. Hence, Pavlovian biases play an essential role in not only explaining motor decision-making behaviour but also the changes which occur through normal ageing.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006304 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 06304&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1006304
DOI: 10.1371/journal.pcbi.1006304
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol (ploscompbiol@plos.org).