EconPapers    
Economics at your fingertips  
 

Irrelevance by inhibition: Learning, computation, and implications for schizophrenia

Nathan Insel, Jordan Guerguiev and Blake A Richards

PLOS Computational Biology, 2018, vol. 14, issue 8, 1-37

Abstract: Symptoms of schizophrenia may arise from a failure of cortical circuits to filter-out irrelevant inputs. Schizophrenia has also been linked to disruptions in cortical inhibitory interneurons, consistent with the possibility that in the normally functioning brain, these cells are in some part responsible for determining which sensory inputs are relevant versus irrelevant. Here, we develop a neural network model that demonstrates how the cortex may learn to ignore irrelevant inputs through plasticity processes affecting inhibition. The model is based on the proposal that the amount of excitatory output from a cortical circuit encodes the expected magnitude of reward or punishment (“relevance”), which can be trained using a temporal difference learning mechanism acting on feedforward inputs to inhibitory interneurons. In the model, irrelevant and blocked stimuli drive lower levels of excitatory activity compared with novel and relevant stimuli, and this difference in activity levels is lost following disruptions to inhibitory units. When excitatory units are connected to a competitive-learning output layer with a threshold, the relevance code can be shown to “gate” both learning and behavioral responses to irrelevant stimuli. Accordingly, the combined network is capable of recapitulating published experimental data linking inhibition in frontal cortex with fear learning and expression. Finally, the model demonstrates how relevance learning can take place in parallel with other types of learning, through plasticity rules involving inhibitory and excitatory components, respectively. Altogether, this work offers a theory of how the cortex learns to selectively inhibit inputs, providing insight into how relevance-assignment problems may emerge in schizophrenia.Author summary: Individuals with schizophrenia have difficulty ignoring ideas and experiences that most people would treat as unimportant. There is evidence that this may be due to changes in neuronal inhibition, suggesting that inhibitory neurons may be involved in learning to ignore irrelevant inputs. By developing a computational model that learns relevance and irrelevance through changes in the strength of feedforward inhibition, we are able to simulate many specific effects of inhibitory neuron dysfunction on behavior. We also show two computational advantages to this mechanism: (1) if relevance is signaled by the level of excitatory activity, then downstream circuits can easily avoid learning from irrelevant stimuli, (2) relevance learning can occur simultaneously with other types of learning. The model therefore offers insight into the relationships between neural inhibition and behavior, including symptoms of schizophrenia.

Date: 2018
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006315 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 06315&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1006315

DOI: 10.1371/journal.pcbi.1006315

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pcbi00:1006315