Comparative structural dynamic analysis of GTPases
Hongyang Li,
Xin-Qiu Yao and
Barry J Grant
PLOS Computational Biology, 2018, vol. 14, issue 11, 1-19
Abstract:
GTPases regulate a multitude of essential cellular processes ranging from movement and division to differentiation and neuronal activity. These ubiquitous enzymes operate by hydrolyzing GTP to GDP with associated conformational changes that modulate affinity for family-specific binding partners. There are three major GTPase superfamilies: Ras-like GTPases, heterotrimeric G proteins and protein-synthesizing GTPases. Although they contain similar nucleotide-binding sites, the detailed mechanisms by which these structurally and functionally diverse superfamilies operate remain unclear. Here we compare and contrast the structural dynamic mechanisms of each superfamily using extensive molecular dynamics (MD) simulations and subsequent network analysis approaches. In particular, dissection of the cross-correlations of atomic displacements in both the GTP and GDP-bound states of Ras, transducin and elongation factor EF-Tu reveals analogous dynamic features. This includes similar dynamic communities and subdomain structures (termed lobes). For all three proteins the GTP-bound state has stronger couplings between equivalent lobes. Network analysis further identifies common and family-specific residues mediating the state-specific coupling of distal functional sites. Mutational simulations demonstrate how disrupting these couplings leads to distal dynamic effects at the nucleotide-binding site of each family. Collectively our studies extend current understanding of GTPase allosteric mechanisms and highlight previously unappreciated similarities across functionally diverse families.Author summary: GTPases are a large superfamily of essential enzymes that regulate a variety of cellular processes. They share a common core structure supporting nucleotide binding and hydrolysis, and are potentially descended from the same ancestor. Yet their biological functions diverge dramatically, ranging from cell division and movement to signal transduction and translation. It has been shown that conformational changes through binding to different substrates underlie the regulation of their activities. Here we investigate the conformational dynamics of three typical GTPases by in silico simulation. We find that these three GTPases possess overall similar substrate-associated dynamic features, beyond their distinct functions. Further identification of key common and family-specific elements in these three families helps us understand how enzymes are adapted to acquire distinct functions from a common core structure. Our results provide unprecedented insights into the functional mechanism of GTPases in general, which potentially facilitates novel protein design in the future.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006364 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 06364&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1006364
DOI: 10.1371/journal.pcbi.1006364
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().