Identification of excitatory-inhibitory links and network topology in large-scale neuronal assemblies from multi-electrode recordings
Vito Paolo Pastore,
Paolo Massobrio,
Aleksandar Godjoski and
Sergio Martinoia
PLOS Computational Biology, 2018, vol. 14, issue 8, 1-25
Abstract:
Functional-effective connectivity and network topology are nowadays key issues for studying brain physiological functions and pathologies. Inferring neuronal connectivity from electrophysiological recordings presents open challenges and unsolved problems. In this work, we present a cross-correlation based method for reliably estimating not only excitatory but also inhibitory links, by analyzing multi-unit spike activity from large-scale neuronal networks. The method is validated by means of realistic simulations of large-scale neuronal populations. New results related to functional connectivity estimation and network topology identification obtained by experimental electrophysiological recordings from high-density and large-scale (i.e., 4096 electrodes) microtransducer arrays coupled to in vitro neural populations are presented. Specifically, we show that: (i) functional inhibitory connections are accurately identified in in vitro cortical networks, providing that a reasonable firing rate and recording length are achieved; (ii) small-world topology, with scale-free and rich-club features are reliably obtained, on condition that a minimum number of active recording sites are available. The method and procedure can be directly extended and applied to in vivo multi-units brain activity recordings.Author summary: The balance between excitation and inhibition is fundamental for proper brain functions and for this reason is precisely regulated in adult cortices. Impaired excitation/inhibition balance is often associated with several neurological disorders, such as epilepsy, autism and schizophrenia. However, estimating functional inhibitory connections is not an easy task and few methods are available to identify such connections from electrophysiological data. Here we present a cross-correlation based method to identify both excitatory and inhibitory functional connections in large-scale neuronal networks. The method is applicable to both in vitro and in vivo spike data recordings. Once a connectivity map (i.e. a graph) is obtained, we characterized the associated topology by means of classical graph theory metrics to unveil functional architecture. In this work, we analyze in vitro cortical networks probed by means of large-scale microelectrode arrays (i.e., 4096 sensors) and we derive network topologies from spike data. The functional organization found is called “small-world and scale-free” and is the same organization found in cortical in vivo brain regions by means of different experimental methods. We also show that to obtain reliable information about network architecture at least a network with a hundred of nodes-neurons is needed.
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006381 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 06381&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1006381
DOI: 10.1371/journal.pcbi.1006381
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().