EconPapers    
Economics at your fingertips  
 

Modeling effects of voltage dependent properties of the cardiac muscarinic receptor on human sinus node function

Robin Moss, Frank B Sachse, Eloy G Moreno-Galindo, Ricardo A Navarro-Polanco, Martin Tristani-Firouzi and Gunnar Seemann

PLOS Computational Biology, 2018, vol. 14, issue 10, 1-15

Abstract: The cardiac muscarinic receptor (M2R) regulates heart rate, in part, by modulating the acetylcholine (ACh) activated K+ current IK,ACh through dissociation of G-proteins, that in turn activate KACh channels. Recently, M2Rs were noted to exhibit intrinsic voltage sensitivity, i.e. their affinity for ligands varies in a voltage dependent manner. The voltage sensitivity of M2R implies that the affinity for ACh (and thus the ACh effect) varies throughout the time course of a cardiac electrical cycle. The aim of this study was to investigate the contribution of M2R voltage sensitivity to the rate and shape of the human sinus node action potentials in physiological and pathophysiological conditions. We developed a Markovian model of the IK,ACh modulation by voltage and integrated it into a computational model of human sinus node. We performed simulations with the integrated model varying ACh concentration and voltage sensitivity. Low ACh exerted a larger effect on IK,ACh at hyperpolarized versus depolarized membrane voltages. This led to a slowing of the pacemaker rate due to an attenuated slope of phase 4 depolarization with only marginal effect on action potential duration and amplitude. We also simulated the theoretical effects of genetic variants that alter the voltage sensitivity of M2R. Modest negative shifts in voltage sensitivity, predicted to increase the affinity of the receptor for ACh, slowed the rate of phase 4 depolarization and slowed heart rate, while modest positive shifts increased heart rate. These simulations support our hypothesis that altered M2R voltage sensitivity contributes to disease and provide a novel mechanistic foundation to study clinical disorders such as atrial fibrillation and inappropriate sinus tachycardia.Author summary: Heart rate regulation is dependent upon a delicate interplay between parasympathetic and sympathetic nerve activity at the level of the sinus node. Acetylcholine slows the heart rate by activating the M2 muscarinic receptor (M2R) that, in turn, opens the acetylcholine-activated potassium channel (IK,ACh) to slow the firing of the sinus node. Surprisingly, the M2R is sensitive to membrane potential and undergoes conformational changes throughout the cardiac action potential that alter the affinity for acetylcholine, with secondary consequences for IK,ACh activity. Here, we investigated the contribution of M2R voltage sensitivity to the rate and shape of the human sinus node action potential in physiological and pathophysiological conditions, using a Markovian model of the IK,ACh channel integrated into a computational model of human sinus node. The computational model allowed us to assess the effects of potential genetic variants that alter specific properties of voltage sensitivity. Our results indicate that alterations in the M2R voltage sensitivity play a significant role in the physiology and pathophysiology of the human sinus node and atria. Our computational model is relevant for future studies aimed at the design and development of anti-arrhythmic agents that specifically target the unique voltage-sensitive properties of M2R.

Date: 2018
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006438 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 06438&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1006438

DOI: 10.1371/journal.pcbi.1006438

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1006438