An information theoretic treatment of sequence-to-expression modeling
Farzaneh Khajouei and
Saurabh Sinha
PLOS Computational Biology, 2018, vol. 14, issue 9, 1-24
Abstract:
Studying a gene’s regulatory mechanisms is a tedious process that involves identification of candidate regulators by transcription factor (TF) knockout or over-expression experiments, delineation of enhancers by reporter assays, and demonstration of direct TF influence by site mutagenesis, among other approaches. Such experiments are often chosen based on the biologist’s intuition, from several testable hypotheses. We pursue the goal of making this process systematic by using ideas from information theory to reason about experiments in gene regulation, in the hope of ultimately enabling rigorous experiment design strategies. For this, we make use of a state-of-the-art mathematical model of gene expression, which provides a way to formalize our current knowledge of cis- as well as trans- regulatory mechanisms of a gene. Ambiguities in such knowledge can be expressed as uncertainties in the model, which we capture formally by building an ensemble of plausible models that fit the existing data and defining a probability distribution over the ensemble. We then characterize the impact of a new experiment on our understanding of the gene’s regulation based on how the ensemble of plausible models and its probability distribution changes when challenged with results from that experiment. This allows us to assess the ‘value’ of the experiment retroactively as the reduction in entropy of the distribution (information gain) resulting from the experiment’s results. We fully formalize this novel approach to reasoning about gene regulation experiments and use it to evaluate a variety of perturbation experiments on two developmental genes of D. melanogaster. We also provide objective and ‘biologist-friendly’ descriptions of the information gained from each such experiment. The rigorously defined information theoretic approaches presented here can be used in the future to formulate systematic strategies for experiment design pertaining to studies of gene regulatory mechanisms.Author summary: In-depth studies of gene regulatory mechanisms employ a variety of experimental approaches such as identifying a gene’s enhancer(s) and testing its variants through reporter assays, followed by transcription factor mis-expression or knockouts, site mutagenesis, etc. The biologist is often faced with the challenging problem of selecting the ideal next experiment to perform so that its results provide novel mechanistic insights, and has to rely on their intuition about what is currently known on the topic and which experiments may add to that knowledge. We seek to make this intuition-based process more systematic, by borrowing ideas from the mature statistical field of experiment design. Towards this goal, we use the language of mathematical models to formally describe what is known about a gene’s regulatory mechanisms, and how an experiment’s results enhance that knowledge. We use information theoretic ideas to assign a ‘value’ to an experiment as well as explain objectively what is learned from that experiment. We demonstrate use of this novel approach on two extensively studied developmental genes in fruitfly. We expect our work to lead to systematic strategies for selecting the most informative experiments in a study of gene regulation.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006459 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 06459&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1006459
DOI: 10.1371/journal.pcbi.1006459
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().