EconPapers    
Economics at your fingertips  
 

Imperfect Bayesian inference in visual perception

Elina Stengård and Ronald van den Berg

PLOS Computational Biology, 2019, vol. 15, issue 4, 1-27

Abstract: Optimal Bayesian models have been highly successful in describing human performance on perceptual decision-making tasks, such as cue combination and visual search. However, recent studies have argued that these models are often overly flexible and therefore lack explanatory power. Moreover, there are indications that neural computation is inherently imprecise, which makes it implausible that humans would perform optimally on any non-trivial task. Here, we reconsider human performance on a visual-search task by using an approach that constrains model flexibility and tests for computational imperfections. Subjects performed a target detection task in which targets and distractors were tilted ellipses with orientations drawn from Gaussian distributions with different means. We varied the amount of overlap between these distributions to create multiple levels of external uncertainty. We also varied the level of sensory noise, by testing subjects under both short and unlimited display times. On average, empirical performance—measured as d’—fell 18.1% short of optimal performance. We found no evidence that the magnitude of this suboptimality was affected by the level of internal or external uncertainty. The data were well accounted for by a Bayesian model with imperfections in its computations. This “imperfect Bayesian” model convincingly outperformed the “flawless Bayesian” model as well as all ten heuristic models that we tested. These results suggest that perception is founded on Bayesian principles, but with suboptimalities in the implementation of these principles. The view of perception as imperfect Bayesian inference can provide a middle ground between traditional Bayesian and anti-Bayesian views.Author summary: The main task of perceptual systems is to make truthful inferences about the environment. The sensory input to these systems is often astonishingly imprecise, which makes human perception prone to error. Nevertheless, numerous studies have reported that humans often perform as accurately as is possible given these sensory imprecisions. This suggests that the brain makes optimal use of the sensory input and computes without error. The validity of this claim has recently been questioned for two reasons. First, it has been argued that a lot of the evidence for optimality comes from studies that used overly flexible models. Second, optimality in human perception is implausible due to limitations inherent to neural systems. In this study, we reconsider optimality in a standard visual perception task by devising a research method that addresses both concerns. In contrast to previous studies, we find clear indications of suboptimalities. Our data are best explained by a model that is based on the optimal decision strategy, but with imperfections in its execution.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006465 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 06465&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1006465

DOI: 10.1371/journal.pcbi.1006465

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1006465