RNA3DCNN: Local and global quality assessments of RNA 3D structures using 3D deep convolutional neural networks
Jun Li,
Wei Zhu,
Jun Wang,
Wenfei Li,
Sheng Gong,
Jian Zhang and
Wei Wang
PLOS Computational Biology, 2018, vol. 14, issue 11, 1-18
Abstract:
Quality assessment is essential for the computational prediction and design of RNA tertiary structures. To date, several knowledge-based statistical potentials have been proposed and proved to be effective in identifying native and near-native RNA structures. All these potentials are based on the inverse Boltzmann formula, while differing in the choice of the geometrical descriptor, reference state, and training dataset. Via an approach that diverges completely from the conventional statistical potentials, our work explored the power of a 3D convolutional neural network (CNN)-based approach as a quality evaluator for RNA 3D structures, which used a 3D grid representation of the structure as input without extracting features manually. The RNA structures were evaluated by examining each nucleotide, so our method can also provide local quality assessment. Two sets of training samples were built. The first one included 1 million samples generated by high-temperature molecular dynamics (MD) simulations and the second one included 1 million samples generated by Monte Carlo (MC) structure prediction. Both MD and MC procedures were performed for a non-redundant set of 414 RNAs. For two training datasets (one including only MD training samples and the other including both MD and MC training samples), we trained two neural networks, named RNA3DCNN_MD and RNA3DCNN_MDMC, respectively. The former is suitable for assessing near-native structures, while the latter is suitable for assessing structures covering large structural space. We tested the performance of our method and made comparisons with four other traditional scoring functions. On two of three test datasets, our method performed similarly to the state-of-the-art traditional scoring function, and on the third test dataset, our method was far superior to other scoring functions. Our method can be downloaded from https://github.com/lijunRNA/RNA3DCNN.Author summary: RNA is an important and versatile macromolecule participating in various biological processes. In addition to experimental approaches, the computational prediction of RNA 3D structures is an alternative and important source of obtaining structural information and insights into their functions. An important part of these computational prediction approaches is structural quality assessment. For this purpose, we developed a 3D CNN-based approach named RNA3DCNN. This approach uses raw atom distributions in 3D space as the input of neural networks and the output is an RMSD-based nucleotide unfitness score for each nucleotide in an RNA molecule, thus making it possible to evaluate local structural quality. Here, we tested and made comparisons with four other traditional scoring functions on three test datasets from different sources.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006514 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 06514&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1006514
DOI: 10.1371/journal.pcbi.1006514
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().