EconPapers    
Economics at your fingertips  
 

Bet-hedging strategies in expanding populations

Paula Villa Martín, Miguel A Muñoz and Simone Pigolotti

PLOS Computational Biology, 2019, vol. 15, issue 4, 1-17

Abstract: In ecology, species can mitigate their extinction risks in uncertain environments by diversifying individual phenotypes. This observation is quantified by the theory of bet-hedging, which provides a reason for the degree of phenotypic diversity observed even in clonal populations. Bet-hedging in well-mixed populations is rather well understood. However, many species underwent range expansions during their evolutionary history, and the importance of phenotypic diversity in such scenarios still needs to be understood. In this paper, we develop a theory of bet-hedging for populations colonizing new, unknown environments that fluctuate either in space or time. In this case, we find that bet-hedging is a more favorable strategy than in well-mixed populations. For slow rates of variation, temporal and spatial fluctuations lead to different outcomes. In spatially fluctuating environments, bet-hedging is favored compared to temporally fluctuating environments. In the limit of frequent environmental variation, no opportunity for bet-hedging exists, regardless of the nature of the environmental fluctuations. For the same model, bet-hedging is never an advantageous strategy in the well-mixed case, supporting the view that range expansions strongly promote diversification. These conclusions are robust against stochasticity induced by finite population sizes. Our findings shed light on the importance of phenotypic heterogeneity in range expansions, paving the way to novel approaches to understand how biodiversity emerges and is maintained.Author summary: Ecological populations are often exposed to unpredictable and variable environmental conditions. A number of strategies have evolved to cope with such uncertainty. One of them is stochastic phenotypic switching, by which some individuals in the community are enabled to tackle adverse conditions, even at the price of reducing overall growth in the short term. In this paper, we study the effectiveness of these “bet-hedging” strategies for a population in the process of colonizing new territory. We show that bet-hedging is more advantageous when the environment varies spatially rather than temporally, and infrequently rather than frequently.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006529 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 06529&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1006529

DOI: 10.1371/journal.pcbi.1006529

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1006529