EconPapers    
Economics at your fingertips  
 

Visual physiology of the layer 4 cortical circuit in silico

Anton Arkhipov, Nathan W Gouwens, Yazan N Billeh, Sergey Gratiy, Ramakrishnan Iyer, Ziqiang Wei, Zihao Xu, Reza Abbasi-Asl, Jim Berg, Michael Buice, Nicholas Cain, Nuno da Costa, Saskia de Vries, Daniel Denman, Severine Durand, David Feng, Tim Jarsky, Jérôme Lecoq, Brian Lee, Lu Li, Stefan Mihalas, Gabriel K Ocker, Shawn R Olsen, R Clay Reid, Gilberto Soler-Llavina, Staci A Sorensen, Quanxin Wang, Jack Waters, Massimo Scanziani and Christof Koch

PLOS Computational Biology, 2018, vol. 14, issue 11, 1-47

Abstract: Despite advances in experimental techniques and accumulation of large datasets concerning the composition and properties of the cortex, quantitative modeling of cortical circuits under in-vivo-like conditions remains challenging. Here we report and publicly release a biophysically detailed circuit model of layer 4 in the mouse primary visual cortex, receiving thalamo-cortical visual inputs. The 45,000-neuron model was subjected to a battery of visual stimuli, and results were compared to published work and new in vivo experiments. Simulations reproduced a variety of observations, including effects of optogenetic perturbations. Critical to the agreement between responses in silico and in vivo were the rules of functional synaptic connectivity between neurons. Interestingly, after extreme simplification the model still performed satisfactorily on many measurements, although quantitative agreement with experiments suffered. These results emphasize the importance of functional rules of cortical wiring and enable a next generation of data-driven models of in vivo neural activity and computations.Author summary: How can we capture the incredible complexity of brain circuits in quantitative models, and what can such models teach us about mechanisms underlying brain activity? To answer these questions, we set out to build extensive, bio-realistic models of brain circuitry by employing systematic datasets on brain structure and function. Here we report the first modeling results of this project, focusing on the layer 4 of the primary visual cortex (V1) of the mouse. Our simulations reproduced a variety of experimental observations in response to a large battery of visual stimuli. The results elucidated circuit mechanisms determining patters of neuronal activity in layer 4 –in particular, the roles of feedforward thalamic inputs and specific patterns of intracortical connectivity in producing tuning of neuronal responses to the orientation of motion. Simplification of neuronal models led to specific deficiencies in reproducing experimental data, giving insights into how biological details contribute to various aspects of brain activity. To enable future development of more sophisticated models, we make the software code, the model, and simulation results publicly available.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006535 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 06535&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1006535

DOI: 10.1371/journal.pcbi.1006535

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pcbi00:1006535