EconPapers    
Economics at your fingertips  
 

Moth olfactory receptor neurons adjust their encoding efficiency to temporal statistics of pheromone fluctuations

Marie Levakova, Lubomir Kostal, Christelle Monsempès, Vincent Jacob and Philippe Lucas

PLOS Computational Biology, 2018, vol. 14, issue 11, 1-17

Abstract: The efficient coding hypothesis predicts that sensory neurons adjust their coding resources to optimally represent the stimulus statistics of their environment. To test this prediction in the moth olfactory system, we have developed a stimulation protocol that mimics the natural temporal structure within a turbulent pheromone plume. We report that responses of antennal olfactory receptor neurons to pheromone encounters follow the temporal fluctuations in such a way that the most frequent stimulus timescales are encoded with maximum accuracy. We also observe that the average coding precision of the neurons adjusted to the stimulus-timescale statistics at a given distance from the pheromone source is higher than if the same encoding model is applied at a shorter, non-matching, distance. Finally, the coding accuracy profile and the stimulus-timescale distribution are related in the manner predicted by the information theory for the many-to-one convergence scenario of the moth peripheral sensory system.Author summary: Sensory neural systems of living organisms encode the representation of their environment with remarkable efficiency. We study the dynamic coding of naturalistic olfactory stimulation by pheromone-specific antennal neurons. The analysis reveals that the representation is optimal from several complementary information-theoretic perspectives. (1) Pheromone encounters are best detected if the concentration follows the naturally intermittent time course. (2) Antennal neurons dynamically adjust to the local stimulus statistics. (3) The coding accuracy profile and the stimulus-timescale distribution are in the relationship predicted by both information theory and statistical estimation theory.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006586 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 06586&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1006586

DOI: 10.1371/journal.pcbi.1006586

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol (ploscompbiol@plos.org).

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1006586