A multiscale model of epigenetic heterogeneity-driven cell fate decision-making
Núria Folguera-Blasco,
Rubén Pérez-Carrasco,
Elisabet Cuyàs,
Javier A Menendez and
Tomás Alarcón
PLOS Computational Biology, 2019, vol. 15, issue 4, 1-27
Abstract:
The inherent capacity of somatic cells to switch their phenotypic status in response to damage stimuli in vivo might have a pivotal role in ageing and cancer. However, how the entry-exit mechanisms of phenotype reprogramming are established remains poorly understood. In an attempt to elucidate such mechanisms, we herein introduce a stochastic model of combined epigenetic regulation (ER)-gene regulatory network (GRN) to study the plastic phenotypic behaviours driven by ER heterogeneity. To deal with such complex system, we additionally formulate a multiscale asymptotic method for stochastic model reduction, from which we derive an efficient hybrid simulation scheme. Our analysis of the coupled system reveals a regime of tristability in which pluripotent stem-like and differentiated steady-states coexist with a third indecisive state, with ER driving transitions between these states. Crucially, ER heterogeneity of differentiation genes is for the most part responsible for conferring abnormal robustness to pluripotent stem-like states. We formulate epigenetic heterogeneity-based strategies capable of unlocking and facilitating the transit from differentiation-refractory (stem-like) to differentiation-primed epistates. The application of the hybrid numerical method validates the likelihood of such switching involving solely kinetic changes in epigenetic factors. Our results suggest that epigenetic heterogeneity regulates the mechanisms and kinetics of phenotypic robustness of cell fate reprogramming. The occurrence of tunable switches capable of modifying the nature of cell fate reprogramming might pave the way for new therapeutic strategies to regulate reparative reprogramming in ageing and cancer.Author summary: Certain modifications of the structure and functioning of the protein/DNA complex called chromatin can allow adult, fully differentiated, cells to adopt a stem cell-like pluripotent state in a purely epigenetic manner, not involving changes in the underlying DNA sequence. Such reprogramming-like phenomena may constitute an innate reparative route through which human tissues respond to injury and could also serve as a novel regenerative strategy in human pathological situations in which tissue or organ repair is impaired. However, it should be noted that in vivo reprogramming would be capable of maintaining tissue homeostasis provided the acquisition of pluripotency features is strictly transient and accompanied by an accurate replenishment of the specific cell types being lost. Crucially, an excessive reprogramming in the absence of controlled re-differentiation would impair the repair or the replacement of damaged cells, thereby promoting pathological alterations of cell fate. A mechanistic understanding of how the degree of chromatin plasticity dictates the reparative versus pathological behaviour of in vivo reprogramming to rejuvenate aged tissues while preventing tumorigenesis is urgently needed, including especially the intrinsic epigenetic heterogeneity of the tissue resident cells being reprogrammed. We here introduce a novel method that mathematically captures how epigenetic heterogeneity is actually the driving force that governs the routes and kinetics to entry into and exit from a pathological stem-like state. Moreover, our approach computationally validates the likelihood of unlocking chronic, unrestrained plastic states and drive their differentiation down the correct path by solely manipulating the intensity and direction of few epigenetic control switches. Our approach could inspire new therapeutic approaches based on in vivo cell reprogramming for efficient tissue regeneration and rejuvenation and cancer treatment.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006592 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 06592&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1006592
DOI: 10.1371/journal.pcbi.1006592
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().