EconPapers    
Economics at your fingertips  
 

On variational solutions for whole brain serial-section histology using a Sobolev prior in the computational anatomy random orbit model

Brian C Lee, Daniel J Tward, Partha P Mitra and Michael I Miller

PLOS Computational Biology, 2018, vol. 14, issue 12, 1-20

Abstract: This paper presents a variational framework for dense diffeomorphic atlas-mapping onto high-throughput histology stacks at the 20 μm meso-scale. The observed sections are modelled as Gaussian random fields conditioned on a sequence of unknown section by section rigid motions and unknown diffeomorphic transformation of a three-dimensional atlas. To regularize over the high-dimensionality of our parameter space (which is a product space of the rigid motion dimensions and the diffeomorphism dimensions), the histology stacks are modelled as arising from a first order Sobolev space smoothness prior. We show that the joint maximum a-posteriori, penalized-likelihood estimator of our high dimensional parameter space emerges as a joint optimization interleaving rigid motion estimation for histology restacking and large deformation diffeomorphic metric mapping to atlas coordinates. We show that joint optimization in this parameter space solves the classical curvature non-identifiability of the histology stacking problem. The algorithms are demonstrated on a collection of whole-brain histological image stacks from the Mouse Brain Architecture Project.Author summary: New developments in neural tracing techniques have motivated the widespread use of histology as a modality for exploring the circuitry of the brain. Automated mapping of pre-labeled atlases onto modern large datasets of histological imagery is a critical step for elucidating the brain’s neural circuitry and shape. This task is challenging as histological sections are imaged independently and the reconstruction of the unsectioned volume is nontrivial. Typically, neuroanatomists use reference volumes of the same subject (e.g. MRI) to guide reconstruction. However, obtaining reference imagery is often non-standard, as in high-throughput animal models like mouse histology. Others have proposed using anatomical atlases as guides, but have not accounted for the intrinsic nonlinear shape difference from atlas to subject. Our method addresses these limitations by jointly optimizing reconstruction informed by an atlas simultaneously with the nonlinear change of coordinates that encapsulates anatomical variation. This accounts for intrinsic shape differences and enables rigorous, direct comparisons of atlas and subject coordinates. Using simulations, we demonstrate that our method recovers the reconstruction parameters more accurately than atlas-free models and innately produces accurate segmentations from simultaneous atlas mapping. We also demonstrate our method on the Mouse Brain Architecture dataset, successfully mapping and reconstructing over 1000 brains.

Date: 2018
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006610 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 06610&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1006610

DOI: 10.1371/journal.pcbi.1006610

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1006610