SFPEL-LPI: Sequence-based feature projection ensemble learning for predicting LncRNA-protein interactions
Wen Zhang,
Xiang Yue,
Guifeng Tang,
Wenjian Wu,
Feng Huang and
Xining Zhang
PLOS Computational Biology, 2018, vol. 14, issue 12, 1-21
Abstract:
LncRNA-protein interactions play important roles in post-transcriptional gene regulation, poly-adenylation, splicing and translation. Identification of lncRNA-protein interactions helps to understand lncRNA-related activities. Existing computational methods utilize multiple lncRNA features or multiple protein features to predict lncRNA-protein interactions, but features are not available for all lncRNAs or proteins; most of existing methods are not capable of predicting interacting proteins (or lncRNAs) for new lncRNAs (or proteins), which don’t have known interactions. In this paper, we propose the sequence-based feature projection ensemble learning method, “SFPEL-LPI”, to predict lncRNA-protein interactions. First, SFPEL-LPI extracts lncRNA sequence-based features and protein sequence-based features. Second, SFPEL-LPI calculates multiple lncRNA-lncRNA similarities and protein-protein similarities by using lncRNA sequences, protein sequences and known lncRNA-protein interactions. Then, SFPEL-LPI combines multiple similarities and multiple features with a feature projection ensemble learning frame. In computational experiments, SFPEL-LPI accurately predicts lncRNA-protein associations and outperforms other state-of-the-art methods. More importantly, SFPEL-LPI can be applied to new lncRNAs (or proteins). The case studies demonstrate that our method can find out novel lncRNA-protein interactions, which are confirmed by literature. Finally, we construct a user-friendly web server, available at http://www.bioinfotech.cn/SFPEL-LPI/.Author summary: LncRNA-protein interactions play important roles in post-transcriptional gene regulation, poly-adenylation, splicing and translation. Identification of lncRNA-protein interactions helps to understand lncRNA-related activities. In this paper, we propose a novel computational method “SFPEL-LPI” to predict lncRNA-protein interactions. SFPEL-LPI makes use of lncRNA sequences, protein sequences and known lncRNA-protein associations to extract features and calculate similarities for lncRNAs and proteins, and then combines them with a feature projection ensemble learning frame. SFPEL-LPI can predict unobserved interactions between lncRNAs and proteins, and also can make predictions for new lncRNAs (or proteins), which have no interactions with any proteins (or lncRNAs). SFPEL-LPI produces high-accuracy performances on the benchmark dataset when evaluated by five-fold cross validation, and outperforms state-of-the-art methods. The case studies demonstrate that SFPEL-LPI can find out novel associations, which are confirmed by literature. To facilitate the lncRNA-protein interaction prediction, we develop a user-friendly web server, available at http://www.bioinfotech.cn/SFPEL-LPI/.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006616 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 06616&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1006616
DOI: 10.1371/journal.pcbi.1006616
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().