Human online adaptation to changes in prior probability
Elyse H Norton,
Luigi Acerbi,
Wei Ji Ma and
Michael S Landy
PLOS Computational Biology, 2019, vol. 15, issue 7, 1-26
Abstract:
Optimal sensory decision-making requires the combination of uncertain sensory signals with prior expectations. The effect of prior probability is often described as a shift in the decision criterion. Can observers track sudden changes in probability? To answer this question, we used a change-point detection paradigm that is frequently used to examine behavior in changing environments. In a pair of orientation-categorization tasks, we investigated the effects of changing probabilities on decision-making. In both tasks, category probability was updated using a sample-and-hold procedure: probability was held constant for a period of time before jumping to another probability state that was randomly selected from a predetermined set of probability states. We developed an ideal Bayesian change-point detection model in which the observer marginalizes over both the current run length (i.e., time since last change) and the current category probability. We compared this model to various alternative models that correspond to different strategies—from approximately Bayesian to simple heuristics—that the observers may have adopted to update their beliefs about probabilities. While a number of models provided decent fits to the data, model comparison favored a model in which probability is estimated following an exponential averaging model with a bias towards equal priors, consistent with a conservative bias, and a flexible variant of the Bayesian change-point detection model with incorrect beliefs. We interpret the former as a simpler, more biologically plausible explanation suggesting that the mechanism underlying change of decision criterion is a combination of on-line estimation of prior probability and a stable, long-term equal-probability prior, thus operating at two very different timescales.Author summary: We demonstrate how people learn and adapt to changes to the probability of occurrence of one of two categories on decision-making under uncertainty. The study combined psychophysical behavioral tasks with computational modeling. We used two behavioral tasks: a typical forced-choice categorization task as well as one in which the observer specified the decision criterion to use on each trial before the stimulus was displayed. We formulated an ideal Bayesian change-point detection model and compared it to several alternative models. We found that the data are explained best by a model that estimates category probability based on recently observed exemplars with a bias towards equal probability. Our results suggest that the brain takes multiple relevant time scales into account when setting category expectations.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006681 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 06681&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1006681
DOI: 10.1371/journal.pcbi.1006681
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().