EconPapers    
Economics at your fingertips  
 

16S rRNA sequence embeddings: Meaningful numeric feature representations of nucleotide sequences that are convenient for downstream analyses

Stephen Woloszynek, Zhengqiao Zhao, Jian Chen and Gail L Rosen

PLOS Computational Biology, 2019, vol. 15, issue 2, 1-25

Abstract: Advances in high-throughput sequencing have increased the availability of microbiome sequencing data that can be exploited to characterize microbiome community structure in situ. We explore using word and sentence embedding approaches for nucleotide sequences since they may be a suitable numerical representation for downstream machine learning applications (especially deep learning). This work involves first encoding (“embedding”) each sequence into a dense, low-dimensional, numeric vector space. Here, we use Skip-Gram word2vec to embed k-mers, obtained from 16S rRNA amplicon surveys, and then leverage an existing sentence embedding technique to embed all sequences belonging to specific body sites or samples. We demonstrate that these representations are meaningful, and hence the embedding space can be exploited as a form of feature extraction for exploratory analysis. We show that sequence embeddings preserve relevant information about the sequencing data such as k-mer context, sequence taxonomy, and sample class. Specifically, the sequence embedding space resolved differences among phyla, as well as differences among genera within the same family. Distances between sequence embeddings had similar qualities to distances between alignment identities, and embedding multiple sequences can be thought of as generating a consensus sequence. In addition, embeddings are versatile features that can be used for many downstream tasks, such as taxonomic and sample classification. Using sample embeddings for body site classification resulted in negligible performance loss compared to using OTU abundance data, and clustering embeddings yielded high fidelity species clusters. Lastly, the k-mer embedding space captured distinct k-mer profiles that mapped to specific regions of the 16S rRNA gene and corresponded with particular body sites. Together, our results show that embedding sequences results in meaningful representations that can be used for exploratory analyses or for downstream machine learning applications that require numeric data. Moreover, because the embeddings are trained in an unsupervised manner, unlabeled data can be embedded and used to bolster supervised machine learning tasks.Author summary: Improvements in the way genomes are sequenced have led to an abundance of microbiome data. With the right approaches, researchers use these data to thoroughly characterize how microbes interact with each other and their host, but sequencing data is of a form (sequences of letters) not ideal for many data analysis approaches. We therefore present an approach to transform sequencing data into arrays of numbers that can capture interesting qualities of the data at the sub-sequence, full-sequence, and sample levels. This allows us to measure the importance of certain microbial sequences with respect to the type of microbe and the condition of the host. Also, representing sequences in this way improves our ability to use other complicated modeling approaches. Using microbiome data from human samples, we show that our numeric representations captured differences between various types of microbes, as well as differences in the body site location from which the samples were collected.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006721 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 06721&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1006721

DOI: 10.1371/journal.pcbi.1006721

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1006721