A numerical approach for a discrete Markov model for progressing drug resistance of cancer
Masayuki Maeda and
Hideaki Yamashita
PLOS Computational Biology, 2019, vol. 15, issue 2, 1-15
Abstract:
The presence of treatment-resistant cells is an important factor that limits the efficacy of cancer therapy, and the prospect of resistance is considered the major cause of the treatment strategy. Several recent studies have employed mathematical models to elucidate the dynamics of generating resistant cancer cells and attempted to predict the probability of emerging resistant cells. The purpose of this paper is to present numerical approach to compute the number of resistant cells and the emerging probability of resistance. Stochastic model was designed and developed a method to approximately but efficiently compute the number of resistant cells and the probability of resistance. To model the progression of cancer, a discrete-state, two-dimensional Markov process whose states are the total number of cells and the number of resistant cells was employed. Then exact analysis and approximate aggregation approaches were proposed to calculate the number of resistant cells and the probability of resistance when the cell population reaches detection size. To confirm the accuracy of computed results of approximation, relative errors between exact analysis and approximation were computed. The numerical values of our approximation method were very close to those of exact analysis calculated in the range of small detection size M = 500, 100, and 1500. Then computer simulation was performed to confirm the accuracy of computed results of approximation when the detection size was M = 10000,30000,50000,100000 and 1000000. All the numerical results of approximation fell between the upper level and the lower level of 95% confidential intervals and our method took less time to compute over a broad range of cell size. The effects of parameter change on emerging probabilities of resistance were also investigated by computed values using approximation method. The results showed that the number of divisions until the cell population reached the detection size is important for emerging the probability of resistance. The next step of numerical approach is to compute the emerging probabilities of resistance under drug administration and with multiple mutation. Another effective approximation would be necessary for the analysis of the latter case.Author summary: Drug therapies for cancer have dramatically succeeded since molecular-targeted drugs have been introduced in medical practice; however, drug treatment often fails owing to the emergence of drug-resistant cells. A variety of approaches, including mathematical modeling, has been undertaken to clarify the mechanism of resistance and subsequently avoid resistance to therapy. This paper proposes one of the mathematical approaches that uses a stochastic model and provides the emerging probabilities of resistance at detection size.
Date: 2019
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006770 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 06770&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1006770
DOI: 10.1371/journal.pcbi.1006770
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().