ChIPulate: A comprehensive ChIP-seq simulation pipeline
Vishaka Datta,
Sridhar Hannenhalli and
Rahul Siddharthan
PLOS Computational Biology, 2019, vol. 15, issue 3, 1-32
Abstract:
ChIP-seq (Chromatin Immunoprecipitation followed by sequencing) is a high-throughput technique to identify genomic regions that are bound in vivo by a particular protein, e.g., a transcription factor (TF). Biological factors, such as chromatin state, indirect and cooperative binding, as well as experimental factors, such as antibody quality, cross-linking, and PCR biases, are known to affect the outcome of ChIP-seq experiments. However, the relative impact of these factors on inferences made from ChIP-seq data is not entirely clear. Here, via a detailed ChIP-seq simulation pipeline, ChIPulate, we assess the impact of various biological and experimental sources of variation on several outcomes of a ChIP-seq experiment, viz., the recoverability of the TF binding motif, accuracy of TF-DNA binding detection, the sensitivity of inferred TF-DNA binding strength, and number of replicates needed to confidently infer binding strength. We find that the TF motif can be recovered despite poor and non-uniform extraction and PCR amplification efficiencies. The recovery of the motif is, however, affected to a larger extent by the fraction of sites that are either cooperatively or indirectly bound. Importantly, our simulations reveal that the number of ChIP-seq replicates needed to accurately measure in vivo occupancy at high-affinity sites is larger than the recommended community standards. Our results establish statistical limits on the accuracy of inferences of protein-DNA binding from ChIP-seq and suggest that increasing the mean extraction efficiency, rather than amplification efficiency, would better improve sensitivity. The source code and instructions for running ChIPulate can be found at https://github.com/vishakad/chipulate.Author summary: DNA-binding proteins perform many key roles in biology, such as transcriptional regulation of gene expression and chromatin modification. ChIP-seq (Chromatin immunoprecipitation followed by high-throughput sequencing) is a widely used experimental technique to identify DNA-binding sites of specific proteins of interest, within cells, genome-wide. DNA fragments from genomic regions that are bound by a protein of interest, often a transcription factor (TF), are selectively extracted using specific antibodies, amplified using PCR, and sequenced. The sequences are mapped to the reference genome. Regions where many sequences map, called “peaks”, are used to infer the location of TF-bound loci (peaks), in vivo occupancy at those loci, and the sequence pattern (motif) to which the TF shows a binding affinity. But measurements of TF occupancy and motif inference are vulnerable to several biological and experimental sources of variation that are poorly understood and difficult to assess directly. Here, we simulate key steps of the ChIP-seq protocol with the aim of estimating the relative effects of various sources of variations on motif inference and binding affinity estimations. Besides providing specific insights and recommendations, we provide a general framework to simulate sequence reads in a ChIP-seq experiment, which should considerably aid in the development of software aimed at analyzing ChIP-seq data.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006921 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 06921&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1006921
DOI: 10.1371/journal.pcbi.1006921
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().