A new method for inferring timetrees from temporally sampled molecular sequences
Sayaka Miura,
Koichiro Tamura,
Qiqing Tao,
Louise A Huuki,
Sergei L Kosakovsky Pond,
Jessica Priest,
Jiamin Deng and
Sudhir Kumar
PLOS Computational Biology, 2020, vol. 16, issue 1, 1-24
Abstract:
Pathogen timetrees are phylogenies scaled to time. They reveal the temporal history of a pathogen spread through the populations as captured in the evolutionary history of strains. These timetrees are inferred by using molecular sequences of pathogenic strains sampled at different times. That is, temporally sampled sequences enable the inference of sequence divergence times. Here, we present a new approach (RelTime with Dated Tips [RTDT]) to estimating pathogen timetrees based on a relative rate framework underlying the RelTime approach that is algebraic in nature and distinct from all other current methods. RTDT does not require many of the priors demanded by Bayesian approaches, and it has light computing requirements. In analyses of an extensive collection of computer-simulated datasets, we found the accuracy of RTDT time estimates and the coverage probabilities of their confidence intervals (CIs) to be excellent. In analyses of empirical datasets, RTDT produced dates that were similar to those reported in the literature. In comparative benchmarking with Bayesian and non-Bayesian methods (LSD, TreeTime, and treedater), we found that no method performed the best in every scenario. So, we provide a brief guideline for users to select the most appropriate method in empirical data analysis. RTDT is implemented for use via a graphical user interface and in high-throughput settings in the newest release of cross-platform MEGA X software, freely available from http://www.megasoftware.net.Author summary: Pathogen timetrees trace the origins and evolutionary histories of strains in populations, hosts, and outbreaks. The tips of these molecular phylogenies often contain sampling time information because the sequences were generally obtained at different times during the disease outbreaks and propagation. We have developed a new method for inferring divergence times and confidence intervals for phylogenies with tip dates. The new Relative Times with Dated Tips (RTDT) methods showed excellent performance in the analysis of computer-simulated datasets, producing similar or better results in several evolutionary scenarios as compared to other fast, non-Bayesian methods. The new method is available in the cross-platform MEGA software package (version 10.1 and higher) that provides a graphical user interface and allows usage via a command line in scripting and high throughput analysis (www.megasoftware.net).
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007046 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 07046&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1007046
DOI: 10.1371/journal.pcbi.1007046
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().