EconPapers    
Economics at your fingertips  
 

Foraging as an evidence accumulation process

Jacob D Davidson and Ahmed El Hady

PLOS Computational Biology, 2019, vol. 15, issue 7, 1-25

Abstract: The patch-leaving problem is a canonical foraging task, in which a forager must decide to leave a current resource in search for another. Theoretical work has derived optimal strategies for when to leave a patch, and experiments have tested for conditions where animals do or do not follow an optimal strategy. Nevertheless, models of patch-leaving decisions do not consider the imperfect and noisy sampling process through which an animal gathers information, and how this process is constrained by neurobiological mechanisms. In this theoretical study, we formulate an evidence accumulation model of patch-leaving decisions where the animal averages over noisy measurements to estimate the state of the current patch and the overall environment. We solve the model for conditions where foraging decisions are optimal and equivalent to the marginal value theorem, and perform simulations to analyze deviations from optimal when these conditions are not met. By adjusting the drift rate and decision threshold, the model can represent different “strategies”, for example an incremental, decremental, or counting strategy. These strategies yield identical decisions in the limiting case but differ in how patch residence times adapt when the foraging environment is uncertain. To describe sub-optimal decisions, we introduce an energy-dependent marginal utility function that predicts longer than optimal patch residence times when food is plentiful. Our model provides a quantitative connection between ecological models of foraging behavior and evidence accumulation models of decision making. Moreover, it provides a theoretical framework for potential experiments which seek to identify neural circuits underlying patch-leaving decisions.Author summary: Foraging is a ubiquitous animal behavior, performed by organisms as different as worms, birds, rats, and humans. Although the behavior has been extensively studied, it is not known how the brain processes information obtained during foraging activity to make subsequent foraging decisions. We form an evidence accumulation model of foraging decisions that describes the process through which an animal gathers information and uses it to make foraging decisions. By building on studies of the neural decision mechanisms within systems neuroscience, this model connects the foraging decision process with ecological models of patch-leaving decisions, such as the marginal value theorem. The model suggests the existence of different foraging strategies, which optimize for different environmental conditions and their potential implementation by neural decision making circuits. The model also shows how state-dependence, such as satiation level, can affect evidence accumulation to lead to sub-optimal foraging decisions. Our model provides a framework for future experimental studies which seek to elucidate how neural decision making mechanisms have been shaped by evolutionary forces in an animal’s surrounding environment.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007060 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 07060&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1007060

DOI: 10.1371/journal.pcbi.1007060

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1007060