EconPapers    
Economics at your fingertips  
 

Phylogeographic reconstruction using air transportation data and its application to the 2009 H1N1 influenza A pandemic

Susanne Reimering, Sebastian Muñoz and Alice C McHardy

PLOS Computational Biology, 2020, vol. 16, issue 2, 1-16

Abstract: Influenza A viruses cause seasonal epidemics and occasional pandemics in the human population. While the worldwide circulation of seasonal influenza is at least partly understood, the exact migration patterns between countries, states or cities are not well studied. Here, we use the Sankoff algorithm for parsimonious phylogeographic reconstruction together with effective distances based on a worldwide air transportation network. By first simulating geographic spread and then phylogenetic trees and genetic sequences, we confirmed that reconstructions with effective distances inferred phylogeographic spread more accurately than reconstructions with geographic distances and Bayesian reconstructions with BEAST that do not use any distance information, and led to comparable results to the Bayesian reconstruction using distance information via a generalized linear model. Our method extends Bayesian methods that estimate rates from the data by using fine-grained locations like airports and inferring intermediate locations not observed among sampled isolates. When applied to sequence data of the pandemic H1N1 influenza A virus in 2009, our approach correctly inferred the origin and proposed airports mainly involved in the spread of the virus. In case of a novel outbreak, this approach allows to rapidly analyze sequence data and infer origin and spread routes to improve disease surveillance and control.Author summary: Influenza A viruses infect up to 5 million people in recurring epidemics every year. Further, viruses of zoonotic origin constantly pose a pandemic risk. Understanding the geographical spread of these viruses, including the origin and the main spread routes between cities, states or countries, could help to monitor or contain novel outbreaks. Based on genetic sequences and sampling locations, the geographic spread can be reconstructed along a phylogenetic tree. Our approach uses a parsimonious reconstruction with air transportation data and was verified using a simulation of the 2009 H1N1 influenza A pandemic. Applied to real sequence data of the outbreak, our analysis gave detailed insights into spread patterns of influenza A viruses, highlighting the origin as well as airports mainly involved in the spread.

Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007101 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 07101&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1007101

DOI: 10.1371/journal.pcbi.1007101

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pcbi00:1007101