EconPapers    
Economics at your fingertips  
 

Close spatial arrangement of mutants favors and disfavors fixation

Yunming Xiao and Bin Wu

PLOS Computational Biology, 2019, vol. 15, issue 9, 1-20

Abstract: Cooperation is ubiquitous across all levels of biological systems ranging from microbial communities to human societies. It, however, seemingly contradicts the evolutionary theory, since cooperators are exploited by free-riders and thus are disfavored by natural selection. Many studies based on evolutionary game theory have tried to solve the puzzle and figure out the reason why cooperation exists and how it emerges. Network reciprocity is one of the mechanisms to promote cooperation, where nodes refer to individuals and links refer to social relationships. The spatial arrangement of mutant individuals, which refers to the clustering of mutants, plays a key role in network reciprocity. Besides, many other mechanisms supporting cooperation suggest that the clustering of mutants plays an important role in the expansion of mutants. However, the clustering of mutants and the game dynamics are typically coupled. It is still unclear how the clustering of mutants alone alters the evolutionary dynamics. To this end, we employ a minimal model with frequency independent fitness on a circle. It disentangles the clustering of mutants from game dynamics. The distance between two mutants on the circle is adopted as a natural indicator for the clustering of mutants or assortment. We find that the assortment is an amplifier of the selection for the connected mutants compared with the separated ones. Nevertheless, as mutants are separated, the more dispersed mutants are, the greater the chance of invasion is. It gives rise to the non-monotonic effect of clustering, which is counterintuitive. On the other hand, we find that less assortative mutants speed up fixation. Our model shows that the clustering of mutants plays a non-trivial role in fixation, which has emerged even if the game interaction is absent.Author summary: Evolutionary dynamics on networks are key for biological and social evolution. Typically, the clustering mutants on networks can dramatically alter the direction of selection. Previous studies on the assortment of mutants assume that individuals interact in a frequency-dependent way. It is hard to tell how assortment alone alters the evolutionary fate. We establish a minimal network model to disentangle the assortment from the game interaction. We find that for weak selection limit, the assortment of mutants plays little role in fixation probability. For strong selection limit, connected mutants, i.e., the maximum assortment, are best for fixation. When the mutants are separated by only one wild-type individual, it is worse off than that separated by more than one wild-type individual in fixation probability. Our results show the nontrivial yet fundamental effect of the clustering on fixation. Noteworthily, it has already arisen, even if the game interaction is absent.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007212 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 07212&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1007212

DOI: 10.1371/journal.pcbi.1007212

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1007212