On the optimal design of metabolic RNA labeling experiments
Alexey Uvarovskii,
Isabel S Naarmann- de Vries and
Christoph Dieterich
PLOS Computational Biology, 2019, vol. 15, issue 8, 1-22
Abstract:
Massively parallel RNA sequencing (RNA-seq) in combination with metabolic labeling has become the de facto standard approach to study alterations in RNA transcription, processing or decay. Regardless of advances in the experimental protocols and techniques, every experimentalist needs to specify the key aspects of experimental design: For example, which protocol should be used (biochemical separation vs. nucleotide conversion) and what is the optimal labeling time? In this work, we provide approximate answers to these questions using the asymptotic theory of optimal design. Specifically, we investigate, how the variance of degradation rate estimates depends on the time and derive the optimal time for any given degradation rate. Subsequently, we show that an increase in sample numbers should be preferred over an increase in sequencing depth. Lastly, we provide some guidance on use cases when laborious biochemical separation outcompetes recent nucleotide conversion based methods (such as SLAMseq) and show, how inefficient conversion influences the precision of estimates. Code and documentation can be found at https://github.com/dieterich-lab/DesignMetabolicRNAlabeling.Author summary: Massively parallel RNA sequencing (RNA-seq) in combination with metabolic labeling has become the de facto standard approach to study alterations in RNA transcription, processing or decay. In our manuscript, we address several key aspects of experimental design: 1) The optimal labeling time, 2) the number of replicate samples over sequencing depth and 3) the choice of experimental protocol. We provide approximate answers to these questions using asymptotic theory of optimal design.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007252 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 07252&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1007252
DOI: 10.1371/journal.pcbi.1007252
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().