Modeling the efficiency of filovirus entry into cells in vitro: Effects of SNP mutations in the receptor molecule
Kwang Su Kim,
Tatsunari Kondoh,
Yusuke Asai,
Ayato Takada and
Shingo Iwami
PLOS Computational Biology, 2020, vol. 16, issue 9, 1-14
Abstract:
Interaction between filovirus glycoprotein (GP) and the Niemann-Pick C1 (NPC1) protein is essential for membrane fusion during virus entry. Some single-nucleotide polymorphism (SNPs) in two surface-exposed loops of NPC1 are known to reduce viral infectivity. However, the dependence of differences in entry efficiency on SNPs remains unclear. Using vesicular stomatitis virus pseudotyped with Ebola and Marburg virus GPs, we investigated the cell-to-cell spread of viruses in cultured cells expressing NPC1 or SNP derivatives. Eclipse and virus-producing phases were assessed by in vitro infection experiments, and we developed a mathematical model describing spatial-temporal virus spread. This mathematical model fit the plaque radius data well from day 2 to day 6. Based on the estimated parameters, we found that SNPs causing the P424A and D508N substitutions in NPC1 most effectively reduced the entry efficiency of Ebola and Marburg viruses, respectively. Our novel approach could be broadly applied to other virus plaque assays.Author summary: Ebola (EBOV) and Marburg (MARV) viruses, which are included viruses of the family Filoviridae, cause severe hemorrhagic fever in humans. Filovirus particles is adsorbed to the cell through glycoprotein (GP), which is the only viral surface protein. Interaction between the filovirus sugar protein (GP) and the Niemann-Pick C1 (NPC1) protein plays a key role in membrane fusion during virus entry. Although some single-nucleotide polymorphism (SNPs) in two surface-exposed loops of NPC1 are known to reduce viral infectivity, the dependence of differences in entry efficiency on SNPs has not been studied. We therefore investigated the cell-to-cell spread of viruses in cultured cells expressing NPC1 or SNP derivatives. Using a mathematical model describing spatial-temporal virus spread, we quantitatively analyze viral entry efficiency and how this affected cell-to-cell spread. Our approach may be applied to not only understanding the roles of genetic polymorphisms in human susceptibility to filoviruses, but also other virus plaque assays.
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007612 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 07612&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1007612
DOI: 10.1371/journal.pcbi.1007612
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().