Structural diversity of B-cell receptor repertoires along the B-cell differentiation axis in humans and mice
Aleksandr Kovaltsuk,
Matthew I J Raybould,
Wing Ki Wong,
Claire Marks,
Sebastian Kelm,
James Snowden,
Johannes Trück and
Charlotte M Deane
PLOS Computational Biology, 2020, vol. 16, issue 2, 1-20
Abstract:
Most current analysis tools for antibody next-generation sequencing data work with primary sequence descriptors, leaving accompanying structural information unharnessed. We have used novel rapid methods to structurally characterize the complementary-determining regions (CDRs) of more than 180 million human and mouse B-cell receptor (BCR) repertoire sequences. These structurally annotated CDRs provide unprecedented insights into both the structural predetermination and dynamics of the adaptive immune response. We show that B-cell types can be distinguished based solely on these structural properties. Antigen-unexperienced BCR repertoires use the highest number and diversity of CDR structures and these patterns of naïve repertoire paratope usage are highly conserved across subjects. In contrast, more differentiated B-cells are more personalized in terms of CDR structure usage. Our results establish the CDR structure differences in BCR repertoires and have applications for many fields including immunodiagnostics, phage display library generation, and “humanness” assessment of BCR repertoires from transgenic animals. The software tool for structural annotation of BCR repertoires, SAAB+, is available at https://github.com/oxpig/saab_plus.Author summary: B-cell receptors (BCR) are the major components of the adaptive immune system. These are immunoglobulin molecules that bind to foreign substances known as antigens. Each individual has a huge BCR repertoire, where each individual BCR has a specific binding site composed of the complementary-determining regions (CDRs) capable of recognising a specific antigen. Drug discovery and immunodiagnostics inspired by the adaptive immune system rely on our ability to accurately interrogate the structural diversity of the binding sites of the BCR repertoire. Here we report our novel rapid pipeline, SAAB+, which has enabled us to interrogate how the structure of the CDR changes in BCR repertoires along the B-cell differentiation axis. By analysing human and mouse BCR repertoires at an unprecedented scale, we observed species-specific structural predetermination and detected CDR dynamics across multiple stages of B-cell differentiation. We showed that naïve repertoires share the highest number and diversity of CDR structures, a pattern which was highly conserved in all B-cell donors. Our results suggest that increased B-cell differentiation is associated with a personalization of CDR structure usages. Finally, we established the differences in CDR usages between humans and mice, analysis with immediate relevance for BCR repertoire “humanness” assessment and rational immunotherapeutic engineering.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007636 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 07636&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1007636
DOI: 10.1371/journal.pcbi.1007636
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().