EconPapers    
Economics at your fingertips  
 

RAINBOW: Haplotype-based genome-wide association study using a novel SNP-set method

Kosuke Hamazaki and Hiroyoshi Iwata

PLOS Computational Biology, 2020, vol. 16, issue 2, 1-17

Abstract: Difficulty in detecting rare variants is one of the problems in conventional genome-wide association studies (GWAS). The problem is closely related to the complex gene compositions comprising multiple alleles, such as haplotypes. Several single nucleotide polymorphism (SNP) set approaches have been proposed to solve this problem. These methods, however, have been rarely discussed in connection with haplotypes. In this study, we developed a novel SNP-set method named “RAINBOW” and applied the method to haplotype-based GWAS by regarding a haplotype block as a SNP-set. Combining haplotype block estimation and SNP-set GWAS, haplotype-based GWAS can be conducted without prior information of haplotypes. We prepared 100 datasets of simulated phenotypic data and real marker genotype data of Oryza sativa subsp. indica, and performed GWAS of the datasets. We compared the power of our method, the conventional single-SNP GWAS, the conventional haplotype-based GWAS, and the conventional SNP-set GWAS. Our proposed method was shown to be superior to these in three aspects: (1) controlling false positives; (2) in detecting causal variants without relying on the linkage disequilibrium if causal variants were genotyped in the dataset; and (3) it showed greater power than the other methods, i.e., it was able to detect causal variants that were not detected by the others, primarily when the causal variants were located very close to each other, and the directions of their effects were opposite. By using the SNP-set approach as in this study, we expect that detecting not only rare variants but also genes with complex mechanisms, such as genes with multiple causal variants, can be realized. RAINBOW was implemented as an R package named “RAINBOWR” and is available from CRAN (https://cran.r-project.org/web/packages/RAINBOWR/index.html) and GitHub (https://github.com/KosukeHamazaki/RAINBOWR).Author summary: Detecting rare variants has been one of the most problematic problems in GWAS. Here, we proposed a novel SNP-set GWAS approach, which is superior in controlling false positives and detecting rare variants compared with conventional approaches, and implemented this method as an R package named “RAINBOWR” (Reliable Association INference By Optimizing Weights with R). In this article, we introduce the application of RAINBOW to haplotype-based GWAS by regarding a haplotype block as a SNP-set, which enables one to perform haplotype-based GWAS without prior haplotype information. We showed that the haplotype-based GWAS with the RAINBOW package succeeded in detecting causal variants with complex mechanisms that were not detected by any other conventional methods. RAINBOW also offers a fast single-SNP GWAS method. RAINBOW offers not only a SNP-set GWAS that can be applied to universal situations but also one that is faster with the restircted situations using linear kernel for constructing the Gram matrix of SNP-set of interest. We also used Rcpp (functions for using C++ in R) for the RAINBOW implementation to achieve faster computation. We believe that our package will lead to the detection of novel genes associated with biologically and agronomically essential traits.

Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007663 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 07663&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1007663

DOI: 10.1371/journal.pcbi.1007663

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1007663