EconPapers    
Economics at your fingertips  
 

Parallel Tempering with Lasso for model reduction in systems biology

Sanjana Gupta, Robin E C Lee and James R Faeder

PLOS Computational Biology, 2020, vol. 16, issue 3, 1-22

Abstract: Systems Biology models reveal relationships between signaling inputs and observable molecular or cellular behaviors. The complexity of these models, however, often obscures key elements that regulate emergent properties. We use a Bayesian model reduction approach that combines Parallel Tempering with Lasso regularization to identify minimal subsets of reactions in a signaling network that are sufficient to reproduce experimentally observed data. The Bayesian approach finds distinct reduced models that fit data equivalently. A variant of this approach that uses Lasso to perform selection at the level of reaction modules is applied to the NF-κB signaling network to test the necessity of feedback loops for responses to pulsatile and continuous pathway stimulation. Taken together, our results demonstrate that Bayesian parameter estimation combined with regularization can isolate and reveal core motifs sufficient to explain data from complex signaling systems.Author summary: Cells respond to diverse environmental cues using complex networks of interacting proteins and other biomolecules. Mathematical and computational models have become invaluable tools to understand these networks and make informed predictions to rationally perturb cell behavior. However, the complexity of detailed models that try to capture all known biochemical elements of signaling networks often makes it difficult to determine the key regulatory elements that are responsible for specific cell behaviors. Here, we present a Bayesian computational approach, PTLasso, to automatically extract minimal subsets of detailed models that are sufficient to explain experimental data. The method simultaneously calibrates and reduces models, and the Bayesian approach samples globally, allowing us to find alternate mechanistic explanations for the data if present. We demonstrate the method on both synthetic and real biological data and show that PTLasso is an effective method to isolate distinct parts of a larger signaling model that are sufficient for specific data.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007669 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 07669&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1007669

DOI: 10.1371/journal.pcbi.1007669

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1007669