Multiple-target tracking in human and machine vision
Shiva Kamkar,
Fatemeh Ghezloo,
Hamid Abrishami Moghaddam,
Ali Borji and
Reza Lashgari
PLOS Computational Biology, 2020, vol. 16, issue 4, 1-28
Abstract:
Humans are able to track multiple objects at any given time in their daily activities—for example, we can drive a car while monitoring obstacles, pedestrians, and other vehicles. Several past studies have examined how humans track targets simultaneously and what underlying behavioral and neural mechanisms they use. At the same time, computer-vision researchers have proposed different algorithms to track multiple targets automatically. These algorithms are useful for video surveillance, team-sport analysis, video analysis, video summarization, and human–computer interaction. Although there are several efficient biologically inspired algorithms in artificial intelligence, the human multiple-target tracking (MTT) ability is rarely imitated in computer-vision algorithms. In this paper, we review MTT studies in neuroscience and biologically inspired MTT methods in computer vision and discuss the ways in which they can be seen as complementary.Author summary: Multiple-target tracking (MTT) is a challenging task vital for both a human’s daily life and for many artificial intelligent systems, such as those used for urban traffic control. Neuroscientists are interested in discovering the underlying neural mechanisms that successfully exploit cognitive resources, e.g., spatial attention or memory, during MTT. Computer-vision specialists aim to develop powerful MTT algorithms based on advanced models or data-driven computational methods. In this paper, we review MTT studies from both communities and discuss how findings from cognitive studies can inspire developers to construct higher performing MTT algorithms. Moreover, some directions have been proposed through which MTT algorithms could raise new questions in the cognitive science domain, and answering them can shed light on neural processes underlying MTT.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007698 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 07698&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1007698
DOI: 10.1371/journal.pcbi.1007698
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().