EconPapers    
Economics at your fingertips  
 

Buffering and total calcium levels determine the presence of oscillatory regimes in cardiac cells

Miquel Marchena, Blas Echebarria, Yohannes Shiferaw and Enrique Alvarez-Lacalle

PLOS Computational Biology, 2020, vol. 16, issue 9, 1-28

Abstract: Calcium oscillations and waves induce depolarization in cardiac cells which are believed to cause life-threathening arrhythimas. In this work, we study the conditions for the appearance of calcium oscillations in both a detailed subcellular model of calcium dynamics and a minimal model that takes into account just the minimal ingredients of the calcium toolkit. To avoid the effects of homeostatic changes and the interaction with the action potential we consider the somewhat artificial condition of a cell without pacing and with no calcium exchange with the extracellular medium. Both the full subcellular model and the minimal model present the same scenarios depending on the calcium load: two stationary states, one with closed ryanodine receptors (RyR) and most calcium in the cell stored in the sarcoplasmic reticulum (SR), and another, with open RyRs and a depleted SR. In between, calcium oscillations may appear. The robustness of these oscillations is determined by the amount of calsequestrin (CSQ). The lack of this buffer in the SR enhances the appearance of oscillations. The minimal model allows us to relate the stability of the oscillating state to the nullcline structure of the system, and find that its range of existence is bounded by a homoclinic and a Hopf bifurcation, resulting in a sudden transition to the oscillatory regime as the cell calcium load is increased. Adding a small amount of noise to the RyR behavior increases the parameter region where oscillations appear and provides a gradual transition from the resting state to the oscillatory regime, as observed in the subcellular model and experimentally.Author summary: In cardiac cells, calcium plays a very important role. An increase in calcium levels is the trigger used by the cell to initiate contraction. Besides, calcium modulates several transmembrane currents, affecting the cell transmembrane potential. Thus, dysregulations in calcium handling have been associated with the appearance of arrhythmias. Often, this dysregulation results in the appearance of periodic calcium waves or global oscillations, providing a pro-arrhythmic substrate. In this paper, we study the onset of calcium oscillations in cardiac cells using both a detailed subcellular model of calcium dynamics and a minimal model that takes into account the essential ingredients of the calcium toolkit. Both reproduce the main experimental results and link this behavior with the presence of different steady-state solutions and bifurcations that depend on the total amount of calcium in the cell and in the level of buffering present. We expect that this work will help to clarify the conditions under which calcium oscillations appear in cardiac myocytes and, therefore, will represent a step further in the understanding of the origin of cardiac arrhythmias.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007728 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 07728&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1007728

DOI: 10.1371/journal.pcbi.1007728

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pcbi00:1007728