EconPapers    
Economics at your fingertips  
 

The research and development process for multiscale models of infectious disease systems

Winston Garira

PLOS Computational Biology, 2020, vol. 16, issue 4, 1-39

Abstract: Multiscale modelling of infectious disease systems falls within the domain of complexity science—the study of complex systems. However, what should be made clear is that current progress in multiscale modelling of infectious disease dynamics is still as yet insufficient to present it as a mature sub-discipline of complexity science. In this article we present a methodology for development of multiscale models of infectious disease systems. This methodology is a set of partially ordered research and development activities that result in multiscale models of infectious disease systems built from different scientific approaches. Therefore, the conclusive result of this article is a methodology to design multiscale models of infectious diseases. Although this research and development process for multiscale models cannot be claimed to be unique and final, it constitutes a good starting point, which may be found useful as a basis for further refinement in the discourse for multiscale modelling of infectious disease dynamics.Author summary: Complex systems such as infectious disease systems are inherently multilevel and multiscale systems. The study of such complex systems is called complexity science. In this article we present a methodology to design multiscale models of infectious disease systems from a complex systems perspective. Within this perspective we define complexity science as the study of the interconnected relationships of the levels and scales of organization of a complex system. We therefore, define the degree of complexity of a complex system as the number of levels and scales of organization of the complex system needed to describe it. In this work we first present a common multiscale vision of the multilevel and multiscale structure of infectious disease systems as complex systems in which the levels and scales of organization of an infectious disease system interact through different self-sustained multiscale cycles/loops (primary multiscale loops, or secondary multiscale loops, or tertiary multiscale loops) formed at different levels of organization of an infectious disease system due to ongoing reciprocal influence between the microscale and the macroscale. Guided by this multiscale vision, we propose a four-stage research and development process that result in multiscale models of infectious disease systems built from different scientific approaches.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007734 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 07734&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1007734

DOI: 10.1371/journal.pcbi.1007734

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pcbi00:1007734